X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hdrcouchot.git/blobdiff_plain/1042ddb8d08dc129da9358b73e723fc5014fb2c8..01003216d61845263ad195f3ecf7334817d60407:/annexePreuveStopping.tex diff --git a/annexePreuveStopping.tex b/annexePreuveStopping.tex index 6bbd41f..510dcef 100644 --- a/annexePreuveStopping.tex +++ b/annexePreuveStopping.tex @@ -261,10 +261,7 @@ the same probability. Therefore, for $t\geq \tau_\ell$, the $\ell$-th bit of $X_t$ is $0$ or $1$ with the same probability, proving the lemma.\end{proof} -\begin{theorem} \label{prop:stop} -If $\ov{h}$ is bijective and square-free, then -$E[\ts]\leq 8{\mathsf{N}}^2+ 4{\mathsf{N}}\ln ({\mathsf{N}}+1)$. -\end{theorem} +\theostopmajorant* For each $X\in \Bool^{\mathsf{N}}$ and $\ell\in\llbracket 1,{\mathsf{N}}\rrbracket$, let $S_{X,\ell}$ be the