X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hdrcouchot.git/blobdiff_plain/23f35c6593b3de7d37b266c9ef6c35da97d98998..020defdbb2ac938563eba1071c78520973093e4b:/14Secrypt.tex?ds=sidebyside diff --git a/14Secrypt.tex b/14Secrypt.tex index b7cb0d3..d4f76f4 100644 --- a/14Secrypt.tex +++ b/14Secrypt.tex @@ -83,7 +83,7 @@ bistoc(X):- allpositive(S4). \end{lstlisting} \end{scriptsize} -\caption{Prolog Problem to Find DSSC Matrix when $n=2$}\label{fig:prolog} +\caption{Code PROLOG permettant de trouver toutes les matrices DSSC pour $n=2$}\label{fig:prolog} \end{figure} Enfin, on définit la relation $\mathcal{R}$, qui est établie pourles deux @@ -156,7 +156,8 @@ Cependant, le graphe $\textsc{giu}(f^*)$ (donné à la Figure~\ref{fig:iteration:f*}) est le $3$-cube dans lequel le cycle $000,100,101,001,011,111,110,010,000$ -a été enlevé. +a été enlevé. Dans cette figure, le le graphe $\textsc{giu}(f)$ est +en continu tandis que le cycle est en pointillés. Ce cycle qui visite chaque n{\oe}ud exactement une fois est un \emph{cycle hamiltonien}. La matrice de Markov correspondante est donnée à @@ -173,7 +174,7 @@ On s'intéresse par la suite à la génération de ce genre de cycles. \label{fig:iteration:f*}]{ \begin{minipage}{0.55\linewidth} \centering - \includegraphics[width=\columnwidth]{images/iter_f0c}% + \includegraphics[width=\columnwidth]{images/iter_f0d}% \end{minipage} }% \subfigure[Matrice de Markov associée à $\textsc{giu}(f^*)$