X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hdrcouchot.git/blobdiff_plain/2bf0bca226facdce323e96552021bf90952eefce..c9035994deb49df7f4452f1f4737481b1caf4b17:/15RairoGen.tex?ds=inline diff --git a/15RairoGen.tex b/15RairoGen.tex index aff664f..a1b6b23 100644 --- a/15RairoGen.tex +++ b/15RairoGen.tex @@ -16,7 +16,7 @@ Cette section présente une application directe de la théorie développée ci-a à la génération de nombres pseudo aléatoires. On présente tout d'abord le générateur basé sur des fonctions chaotiques (section~\ref{sub:prng:algo}), -puis comment intégrer la contrainte de distributionuniforme +puis comment intégrer la contrainte de distribution uniforme de la sortie dans le choix de la fonction à itérer (section~\ref{sub:prng:unif}). L'approche est évaluée dans la dernière section. @@ -46,8 +46,7 @@ $x\leftarrow{F_{f_u}(s,x)}$\; } return $x$\; %\end{scriptsize} -\caption{Algorithme de génération de nombres pseudo aléatoires -à l'aide de la fonction chaotique $G_f$} +\caption{PRNG basé sur les itérations unaires.} \label{CI Algorithm} \end{algorithm} @@ -69,14 +68,14 @@ de nombres pseudo aléatoires Cet algorithme est utilisée dans notre générateur pour construire la longueur de la stratégie ainsi que les éléments qui la composent. Pratiquement, il retourne des entiers dans $\llbracket 1 ; l \rrbracket$ -selon une distributionuniforme et utilise +selon une distribution uniforme et utilise \textit{XORshift} qui est une classe de générateurs de nombres pseudo aléatoires conçus par George Marsaglia. L'algorithme \textit{XORshift} exploite itérativement l'opérateur $\oplus$ -sur des nombres obtenus grâce à des decalages de bits. +sur des nombres obtenus grâce à des décalages de bits. Cet opérateur, défini dans $\Bool^{n}$, applique la fonction \og xor \fg{} aux bits de même rang de ses deux opérandes (\og opération bit à bit \fg{}). @@ -118,8 +117,8 @@ si la propriété suivante est établie: $$\exists k \in \mathds{N}^\ast, \forall i,j \in \llbracket 1; n \rrbracket, M_{ij}^k>0.$$ On énonce enfin le théorème suivant liant les -vecteur de probabilite -et les chaines de Markov. +vecteur de probabilités +et les chaînes de Markov. @@ -128,11 +127,11 @@ et les chaines de Markov. Si $M$ est une matrice stochastique régulière, alors $M$ possède un unique vecteur stationnaire de probabilités $\pi$ ($\pi.M = \pi$). - De plus, si $\pi^0$ est un {vecteurDeProbabilite} + De plus, si $\pi^0$ est un {vecteur de probabilités} et si on définit la suite $(\pi^{k})^{k \in \Nats}$ par $\pi^{k+1} = \pi^k.M $ pour $k = 0, 1,\dots$ - alors la {chaineDeMarkov} $\pi^k$ + alors la {chaîne de Markov} $\pi^k$ converge vers $\pi$ lorsque $k$ tend vers l'infini. \end{theorem} @@ -146,8 +145,8 @@ et $h(x_1,x_2)=(\overline{x_1},x_1\overline{x_2}+\overline{x_1}x_2)$. Leurs graphes d'interactions donnés en figure \ref{fig:g:inter} et \ref{fig:h:inter} vérifient les hypothèses du théorème~\ref{th:Adrien}. Leurs graphes d'itérations -sont donc fortement connexes, ce que l'on peut vérifier aux figures -\ref{fig:g:iter} et \ref{fig:h:iter}. +sont donc fortement connexes, ce que l'on peut vérifier aux figures~\ref{fig:g:iter} +et~\ref{fig:h:iter}. \textit{A priori}, ces deux fonctions pourraient être intégrées dans un générateur de nombres pseudo aléatoires. Montrons que ce n'est pas le cas pour $g$ et que cela l'est pour $h$. @@ -228,7 +227,7 @@ Il est facile de vérifier que la matrice de transitions d'un tel processus est $M_g = \frac{1}{2} \check{M}_g$, où $\check{M}_g$ est la matrice d' adjacence donnée en -figure~\ref{fig:g:incidence} (voir ci-après), et similairement pour $M_h$. +figure~\ref{fig:g:incidence} (voir ci-après), et de manière similaire pour $M_h$. \begin{figure}[h] \begin{center} @@ -293,7 +292,7 @@ de valeurs soit suffisamment grand de sorte que le vecteur d’état de la chaîne de Markov ait une distribution suffisamment proche de la distribution uniforme. -On énnonce directement le théorème suivant dont la preuve est donnée en annexes~\ref{anx:generateur}. +On énonce directement le théorème suivant dont la preuve est donnée en annexes~\ref{anx:generateur}. \begin{theorem} Soit $f: \Bool^{n} \rightarrow \Bool^{n}$, $\textsc{giu}(f)$ son @@ -311,7 +310,7 @@ On énnonce directement le théorème suivant dont la preuve est donnée en anne On reprend le graphe d'interactions $\Gamma(f)$ donné en figure~\ref{fig:G} à la section~\ref{sec:11FCT}. On a vu qu'il y avait 520 fonctions $f$ non isomorphes de graphe d'interactions $\Gamma(f)$, -dont seulement 16 d'entre elles possédent une matrice doublement stochastique. +dont seulement 16 d'entre elles possèdent une matrice doublement stochastique. La figure~\ref{fig:listfonction} explicite ces 16 fonctions en définissant les images des éléments de la liste @@ -332,15 +331,21 @@ ce vecteur au vecteur $\pi=(\frac{1}{2^n},\ldots,\frac{1}{2^n})$ -- autrement dit, où la déviation par rapport à la distribution uniforme -- est inférieure à $10^{-4}$. En prenant le max pour tous les $e_i$, on obtient une valeur pour - $b$. Ainsi, on a -$$ + $b$. +Ainsi, on a +\begin{equation} b = \max\limits_{i \in \llbracket 1, 2^n \rrbracket} \{ \min \{ t \mid t \in \Nats, \vectornorm{e_i M_f^t - \pi} < 10^{-4} \} \}. -$$ +\label{eq:mt:ex} +\end{equation} + +\noindent Par la suite, ce nombre sera appelé \emph{temps de mélange}. + + \begin{figure}%[h] \begin{center} @@ -426,8 +431,8 @@ L'expérience a montré notamment que toutes ces fonctions passent avec succès cette batterie de tests. Pour conclure cette section, on remarque que le générateur de nombres pseudo-aléatoires -a été prouvé chaotique pour $b=1$, \textit{i.e.}, lorqu'il y a une sortie pour chaque itération. -Ceci est difficilement compatible avec la volonté d'avoir une sortie uniformémement distribuée: +a été prouvé chaotique pour $b=1$, \textit{i.e.}, lorsqu'il y a une sortie pour chaque itération. +Ceci est difficilement compatible avec la volonté d'avoir une sortie uniformément distribuée: se rapprocher de cette distribution nécessite en effet un nombre plus élevé d'itérations $b$ entre chaque sortie. Par exemple, dans l'exemple précédent, il est nécessaire d'itérer au moins 42 fois entre chaque sortie pour suivre une loi uniforme à $10^{-4}$ près. @@ -438,7 +443,7 @@ est l'objectif de la section suivante. \section{Un PRNG basé sur des itérations unaires qui est chaotique } Cette section présente un espace métrique adapté au générateur de nombres pseudo-aléatoires -pésenté à l'algorithme~\ref{CI Algorithm} et prouve ensuite que la fonction qu'il représente +présenté à l'algorithme~\ref{CI Algorithm} et prouve ensuite que la fonction qu'il représente est chaotique sur cet espace. \subsection{Un espace $\mathcal{X}_{\mathsf{N},\mathcal{P}}$ pour le PRNG de l'algorithme~\ref{CI Algorithm}} @@ -455,7 +460,7 @@ Dans l'algorithme~\ref{CI Algorithm}, $\mathsf{p}$ vaut 1 et $p_1=b$. -Cet algorithme peut être vu comme $b$ compostions de la function $F_{f_u}$. +Cet algorithme peut être vu comme $b$ compostions de la fonction $F_{f_u}$. Ceci peut cependant se généraliser à $p_i$, $p_i \in \mathcal{P}$, compositions fonctionnelles de $F_{f_u}$. Ainsi, pour chaque $p_i \in \mathcal{P}$, on construit la fonction @@ -479,7 +484,7 @@ Le second élément est aussi une paire $((u^k)_{k \in \Nats},(v^k)_{k \in \Nats La suite $(v^k)_{k \in \Nats}$ définit combien d'itérations sont exécutées au temps $k$ entre deux sorties. La séquence $(u^k)_{k \in \Nats}$ définit quel élément est modifié (toujours au temps $k$). -Définissons la fonction de décallage $\Sigma$ pour chaque élément de $\mathds{S}_{\mathsf{N},\mathcal{P}}$. +Définissons la fonction de décalage $\Sigma$ pour chaque élément de $\mathds{S}_{\mathsf{N},\mathcal{P}}$. $$\begin{array}{cccc} \Sigma:&\mathds{S}_{\mathsf{N},\mathcal{P}} &\longrightarrow &\mathds{S}_{\mathsf{N},\mathcal{P}} \\ @@ -487,7 +492,7 @@ $$\begin{array}{cccc} \end{array} $$ En d'autres termes, $\Sigma$ reçoit deux suites $u$ et $v$ et -effectue $v^0$ décallage vers la droite sur la première et un décallage vers la droite +effectue $v^0$ décalage vers la droite sur la première et un décalage vers la droite sur la seconde. @@ -528,7 +533,7 @@ $u^0, u^1, \hdots, u^{v^0-1}$ et $\check{u}^0, \check{u}^1, \hdots, \check{u}^{ suivie par les différences entre $u^{v^0}, u^{v^0+1}, \hdots, u^{v^1-1}$ et $\check{u}^{\check{v}^0}, \check{u}^{\check{v}^0+1}, \hdots, \check{u}^{\check{v}^1-1}$, etc. -Plus précisemment, soit +Plus précisément, soit $p = \lfloor \log_{10}{(\max{\mathcal{P}})}\rfloor +1$ et $n = \lfloor \log_{10}{(\mathsf{N})}\rfloor +1$. \begin{itemize} @@ -603,7 +608,7 @@ On prend alors le $v^0=1$ premier terme de $u$, chaque terme étant codé sur $n=2$ éléments, soit 06. Comme on itère au plus $\max{(\mathcal{P})}$ fois, on complète cette valeur par des 0 de sorte que -la chaine obtenue a $n\times \max{(\mathcal{P})}=22$ éléments, soit: +la chaîne obtenue a $n\times \max{(\mathcal{P})}=22$ éléments, soit: 0600000000000000000000. De manière similaire, les $\check{v}^0=2$ premiers termes de $\check{u}$ sont représentés par @@ -648,5 +653,98 @@ $d$ est une distance sur $\mathcal{X}_{\mathsf{N},\mathcal{P}}$. \subsection{Le graphe $\textsc{giu}_{\mathcal{P}}(f)$ étendant $\textsc{giu}(f)$} +A partir de $\mathcal{P}=\{p_1, p_2, \hdots, p_\mathsf{p}\}$, on +définit le graphe orienté $\textsc{giu}_{\mathcal{P}}(f)$ de la manière suivante: +\begin{itemize} +\item les n{\oe}uds sont les $2^\mathsf{N}$ configurations de $\mathds{B}^\mathsf{N}$, +%\item Each vertex has $\displaystyle{\sum_{i=1}^\mathsf{p} \mathsf{N}^{p_i}}$ arrows, namely all the $p_1, p_2, \hdots, p_\mathsf{p}$ tuples +% having their elements in $\llbracket 1, \mathsf{N} \rrbracket $. +\item il y a un arc libellé $u_0, \hdots, u_{p_i-1}$, $i \in \llbracket 1, \mathsf{p} \rrbracket$ entre les n{\oe}uds $x$ et $y$ si et seulement si $p_i$ est un élément de +$\mathcal{P}$ (\textit{i.e.}, on peut itérer $p_i$ fois), +chaque $u_k$ de la suite appartient à $[\mathsf{N}]$ et +$y=F_{f_u,p_i} (x, (u_0, \hdots, u_{p_i-1})) $. +\end{itemize} +Il n'est pas difficile de constater que $\textsc{giu}_{\{1\}}(f)$ est $\textsc{giu}(f)$. + + + + + +\begin{figure}%[t] + \begin{center} + \subfigure[$\textsc{giu}_{\{2\}}(h)$]{ + \begin{minipage}{0.30\textwidth} + \begin{center} + \includegraphics[height=4cm]{images/h2prng} + \end{center} + \end{minipage} + \label{fig:h2prng} + } + \subfigure[$\textsc{giu}_{\{3\}}(h)$]{ + \begin{minipage}{0.40\textwidth} + \begin{center} + \includegraphics[height=4cm]{images/h3prng} + \end{center} + \end{minipage} + \label{fig:h3prng} + } + \subfigure[$\textsc{giu}_{\{2,3\}}(h)$]{ + \begin{minipage}{0.40\textwidth} + \begin{center} + \includegraphics[height=4cm]{images/h23prng} + \end{center} + \end{minipage} + \label{fig:h23prng} + } + + \end{center} + \caption{Graphes d'itérations $\textsc{giu}_{\mathcal{P}}(h)$ pour $h(x_1,x_2)=(\overline{x_1},x_1\overline{x_2}+\overline{x_1}x_2)$} + %\label{fig:xplgraphIter} + \end{figure} + + + + +\begin{xpl} +On reprend l'exemple où $\mathsf{N}=2$ et +$h(x_1,x_2)=(\overline{x_1},x_1\overline{x_2}+\overline{x_1}x_2)$ déjà détaillé +à la section~\ref{sub:prng:unif}. + +Le graphe $\textsc{giu}_{\{1\}}(h)$ a déjà été donné à la figure~\ref{fig:h:iter}. +Les graphes $\textsc{giu}_{\{2\}}(h)$, $\textsc{giu}_{\{3\}}(h)$ et +$\textsc{giu}_{\{2,3\}}(h)$ sont respectivement donnés aux figure~\ref{fig:h2prng}, ~\ref{fig:h3prng} et ~\ref{fig:h23prng}. +Le premier (respectivement le second) +illustre le comportement du générateur lorsque qu'on itère exactement +2 fois (resp. 3 fois) puis qu'on affiche le résultat. +Le dernier donnerait le comportement d'un générateur qui s'autoriserait +à itérer en interne systématiquement 2 ou trois fois avant de retourner un résultat. + +\end{xpl} + + \subsection{le PRNG de l'algorithme~\ref{CI Algorithm} est chaotique sur $\mathcal{X}_{\mathsf{N},\mathcal{P}}$} +Le théorème suivant, similaire à celui dans $\mathcal{X}_u$ et dans $\mathcal{X}_g$ +est prouvé en annexes~\ref{anx:generateur}. + +\begin{theorem} +La fonction $G_{f_u,\mathcal{P}}$ est chaotique sur + $(\mathcal{X}_{\mathsf{N},\mathcal{P}},d)$ si et seulement si +graphe d'itération $\textsc{giu}_{\mathcal{P}}(f)$ +est fortement connexe. +\end{theorem} +On alors corollaire suivant + +\begin{corollary} + Le générateur de nombre pseudo aléatoire détaillé + à l'algorithme~\ref{CI Algorithm} + n'est pas chaotique + sur $(\mathcal{X}_{\mathsf{N},\{b\}},d)$ pour la fonction négation. +\end{corollary} +\begin{proof} + Dans cet algorithme, $\mathcal{P}$ est le singleton $\{b\}$. + Que $b$ soit pair ou impair, $\textsc{giu}_{\mathcal{b}}(f)$ + n'est pas fortement connexe. +\end{proof} + +