X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hdrcouchot.git/blobdiff_plain/2e94005a3f7d64d4784c70b543136360dd2f6d76..8919030d089a2f9508939162c80665d0f9c7987f:/14Secrypt.tex diff --git a/14Secrypt.tex b/14Secrypt.tex index f74f8fe..597acbb 100644 --- a/14Secrypt.tex +++ b/14Secrypt.tex @@ -21,7 +21,7 @@ arête sortante et une arête entrante. % This part is addressed in the first section. Next, we analyse the first % results to provide a generation of DSSC matrices with small mixing times. -\section{Programmation logique par contraintes sur des domaines finis} +\section{Programmation logique par contraintes sur des domaines finis}\label{sec:plc} Tout d'abord, soit ${\mathsf{N}}$ le nombre d'éléments. Pour éviter d'avoir à gérer des fractions, on peut considérer que les matrices (d'incidence) à générer ont des lignes et des colonnes dont les @@ -94,7 +94,7 @@ C'est évidemment une relation d'équivalence. -\subsection{Analyse de l'approche}\label{sub:prng:ana} +%\subsection{Analyse de l'approche}\label{sub:prng:ana} Exécutée sur un ordinateur personnelle, PROLOG trouve en moins d'une seconde les 49 solutions pour $n=2$, @@ -235,25 +235,27 @@ M=\dfrac{1}{3} \left( -\section{Graphes - $\textsc{giu}(f)$ - $\textsc{gig}(f)$ - fortement connexes et doublement stochastiques}\label{sec:gen:dblstc} -% Secrypt 14 +% section{Graphes +% $\textsc{giu}(f)$ +% $\textsc{gig}(f)$ +% fortement connexes et doublement stochastiques}\label{sec:gen:dblstc} +% % +%Secrypt 14 -\subsection{Suppression des cycles hamiltoniens} +\section{Suppression des cycles hamiltoniens} \label{sec:hamiltonian} -Dans un premier temps, nous montrons en section~\ref{sub:removing:theory} que la +Dans un premier temps, nous montrons %en section~\ref{sub:removing:theory} +que la suppression d'un cycle hamiltonien produit bien des matrices doublement stochastiques. Nous établissons ensuite le lien avec les codes de Gray équilibrés. -\subsubsection{Aspects théoriques} -\label{sub:removing:theory} +%\subsubsection{Aspects théoriques} +%\label{sub:removing:theory} Nous donnons deux résultats complémentaires, reliant la suppression d'un cycle hamiltonien du $n$-cube, les matrices doublement stochastiques et la forte @@ -322,7 +324,7 @@ fixe ($n$), dont les éléments successifs ne différent que par un seul bit. code de Gray est \emph{cyclique} si le premier élément et le dernier ne différent que par un seul bit. -\subsection{Lien avec les codes de Gray cycliques (totalement) équilibrés} +\section{Lien avec les codes de Gray cycliques (totalement) équilibrés} \label{sub:gray} La borne inférieure du nombre de codes de Gray ($\left(\frac{n*\log2}{e \log @@ -375,7 +377,7 @@ vérifiant $\sum_{i=1}^nNT_n(i) = 2^n$. ce code est totalement équilibré. \end{xpl} -\subsection{Génération de codes de Gray équilibrés par induction} +\section{Génération de codes de Gray équilibrés par induction} \label{sec:induction} Dans leur article de 2004~\cite{ZanSup04}, Zanten et Suparta proposent un @@ -572,7 +574,7 @@ chaque itération qu'un seul élément de $[n]$. On pourrait penser à un algorithme basé sur les itérations généralisées, c'est-à-dire qui modifierait une partie des éléments de $[n]$ à chaque itération. -C'est l'algorithme~\ref{CI Algorithm:prng:g}. +C'est l'algorithme~\ref{CI Algorithm:prng:g} donné ci-après. \begin{algorithm}[ht] %\begin{scriptsize} @@ -610,10 +612,10 @@ généralisées. correspondante à ce graphe et $M$ une matrice $2^n\times 2^n$ définie par - $M = \dfrac{1}{n} \check{M}$. + $M = \dfrac{1}{2^n} \check{M}$. Si $\textsc{gig}(f)$ est fortement connexe, alors la sortie du générateur de nombres pseudo aléatoires détaillé par - l'algorithme~\ref{CI Algorithm} suit une loi qui + l'algorithme~\ref{CI Algorithm:prng:g} suit une loi qui tend vers la distribution uniforme si et seulement si $M$ est une matrice doublement stochastique. \end{theorem} @@ -623,8 +625,8 @@ Elle n'est donc pas rappelée. \begin{xpl} - On reprend l'exemple donné à la section~\ref{sub:prng:ana}: - Dans le $3$-cube cycle hamiltonien défini par la séquence + On reprend l'exemple donné à la section~\ref{sec:plc}. + Dans le $3$-cube, le cycle hamiltonien défini par la séquence $000,100,101,001,011,111,110,010,000$ a été supprimé engendrant la fonction $f^*$ définie par $$f^*(x_1,x_2,x_3)= @@ -639,15 +641,15 @@ la figure~\ref{fig:markov:f*}. \begin{figure}[ht] \begin{center} - \subfigure[Graphe des itérations chaotiques de $f^*$. + \subfigure[Graphe $\textsc{gig}(f^*)$ \label{fig:iteration:f*}]{ \begin{minipage}{0.55\linewidth} \centering \includegraphics[width=\columnwidth]{images/iter_f}% \end{minipage} }% - \subfigure[Matrice de Markov du graphe d'itérations chaotiques de - $f^*$\label{fig:markov:f*}]{% + \subfigure[Matrice de Markov associée au $\textsc{gig}(f^*)$ + \label{fig:markov:f*}]{% \begin{minipage}{0.35\linewidth} \begin{scriptsize} \begin{center} @@ -675,8 +677,8 @@ la figure~\ref{fig:markov:f*}. \end{minipage} }% \caption{Représentations de $f^*(x_1,x_2,x_3)= - (x_2 \oplus x_3, \overline{x_1}\overline{x_3} + x_1\overline{x_2}, - \overline{x_1}\overline{x_3} + x_1x_2)$.}\label{fig1} + (x_2 \oplus x_3, \overline{x_1}.\overline{x_3} + x_1\overline{x_2}, + \overline{x_1}.\overline{x_3} + x_1x_2)$.}\label{fig1} \end{center} \end{figure} \end{xpl} @@ -686,111 +688,134 @@ la figure~\ref{fig:markov:f*}. \begin{table}[ht] \begin{center} \begin{scriptsize} - \begin{tabular}{|c|l|c|c|} + \begin{tabular}{|c|c|l|c|c|} \hline - fonction & $f(x)$, $f(x)$ pour $x \in [0,1,2,\hdots,2^n-1]$ & $b$ & $b'$ \\ + $n$ & fonction & $f(x)$, $f(x)$ pour $x \in [0,1,2,\hdots,2^n-1]$ & $b$ & $b'$ \\ \hline - $f^{*4}$ & [13,10,9,14,3,11,1,12,15,4,7,5,2,6,0,8] & 17 & 38 \\ + 4 & $f^{*4}$ & [13,10,9,14,3,11,1,12,15,4,7,5,2,6,0,8] & \textbf{17} & \textbf{38} \\ \hline - $f^{*5}$ & [29, 22, 25, 30, 19, 27, 24, 16, 21, 6, 5, 28, 23, 26, 1, & 13 & 48 \\ - & 17, 31, 12, 15, 8, 10, 14, 13, 9, 3, 2, 7, 20, 11, 18, 0, 4] & & \\ + \multirow{4}{0.5cm}{5}& $f^{*5}$ & [29, 22, 25, 30, 19, 27, 24, 16, 21, 6, 5, 28, 23, 26, 1, & \textbf{13} & 48 \\ + & & 17, 31, 12, 15, 8, 10, 14, 13, 9, 3, 2, 7, 20, 11, 18, 0, 4] & & \\ + \cline{2-5} + & $g^{*5}$ & [29, 22, 21, 30, 19, 27, 24, 28, 7, 20, 5, 4, 23, 26, 25, & 15 & \textbf{47} \\ + & & 17, 31, 12, 15, 8, 10, 14, 13, 9, 3, 2, 1, 6, 11, 18, 0, 16 + & & \\ + \hline - $f^{*6}$ & [55, 60, 45, 44, 58, 62, 61, 48, 53, 50, 52, 36, 59, 34, 33, & 11 & 55 \\ - & 49, 15, 42, 47, 46, 35, 10, 57, 56, 7, 54, 39, 37, 51, 2, 1, & & \\ - & 40, 63, 26, 25, 30, 19, 27, 17, 28, 31, 20, 23, 21, 18, 22, & & \\ - & 16, 24, 13, 12, 29, 8, 43, 14, 41, 0, 5, 38, 4, 6, 11, 3, 9, 32] & & \\ - \hline - $f^{*7}$ & [111, 94, 93, 116, 122, 114, 125, 88, 87, 126, 119, 84, 123, & 10 & 63 \\ - & 98, 81, 120, 109, 106, 105, 110, 99, 107, 104, 108, 101, 70, & & \\ - & 117, 96, 67, 102, 113, 64, 79, 30, 95, 124, 83, 91, 121, 24, & & \\ - & 23, 118, 69, 20, 115, 90, 17, 112, 77, 14, 73, 78, 74, 10, 72, & & \\ - & 76, 103, 6, 71, 100, 75, 82, 97, 0, 127, 54, 57, 62, 51, 59, & & \\ - & 56, 48, 53, 38, 37, 60, 55, 58, 33, 49, 63, 44, 47, 40, 42, & & \\ - & 46, 45, 41, 35, 34, 39, 52, 43, 50, 32, 36, 29, 28, 61, 92, & & \\ - & 26, 18, 89, 25, 19, 86, 85, 4, 27, 2, 16, 80, 31, 12, 15, 8, & & \\ - & 3, 11, 13, 9, 5, 22, 21, 68, 7, 66, 65, 1] & & \\ + \multirow{8}{0.5cm}{6}& $f^{*6}$ & + [55, 60, 45, 56, 58, 42, 61, 40, 53, 50, 52, 54, 59, 34, 33, & \multirow{4}{0.5cm}{\textbf{11}}& \multirow{4}{0.5cm}{55}\\ +& & 49, 39, 62, 47, 46, 11, 43, 57, 8, 37, 6, 36, 4, 51, 38, 1, & & \\ +& & 48, 63, 26, 25, 30, 19, 27, 17, 28, 31, 20, 23, 21, 18, 22, & & \\ +& & 16, 24, 13, 12, 29, 44, 10, 14, 41, 0, 15, 2, 7, 5, 35, 3, 9, 32] & &\\ + \cline{2-5} +&$g^{*6}$ & [55, 60, 45, 44, 43, 62, 61, 48, 53, 50, 52, 36, 59, 51, 33, & \multirow{4}{0.5cm}{12}& \multirow{4}{0.5cm}{\textbf{54}}\\ + & & 49, 15, 14, 47, 46, 35, 58, 57, 56, 7, 54, 39, 37, 3, 38, 1, & & \\ + & & 40, 63, 26, 25, 30, 19, 27, 17, 28, 31, 20, 23, 21, 18, 22, & & \\ + & & 16, 24, 13, 12, 29, 8, 10, 42, 41, 0, 5, 2, 4, 6, 11, 34, 9, 32] & & \\ + \hline + \multirow{9}{0.5cm}{7} &$f^{*7}$ & [111, 94, 93, 116, 122, 114, 125, 88, 115, 126, 85, 84, 123, & \multirow{9}{0.5cm}{\textbf{10}} & \multirow{9}{0.5cm}{\textbf{63}} \\ + & & 98, 81, 120, 109, 78, 105, 110, 99, 107, 104, 108, 101, 118, & & \\ + & & 117, 96, 103, 66, 113, 64, 79, 86, 95, 124, 83, 91, 121, 24, & & \\ + & & 119, 22, 69, 20, 87, 18, 17, 112, 77, 76, 73, 12, 74, 106, 72, & & \\ + & & 8, 7, 102, 71, 100, 75, 82, 97, 0, 127, 54, 57, 62, 51, 59, & & \\ + & & 56, 48, 53, 38, 37, 60, 55, 58, 33, 49, 63, 44, 47, 40, 42, & & \\ + & & 46, 45, 41, 35, 34, 39, 52, 43, 50, 32, 36, 29, 28, 61, 92, & & \\ + & & 26, 90, 89, 25, 19, 30, 23, 4, 27, 2, 16, 80, 31, 10, 15, 14, & & \\ + & & 3, 11, 13, 9, 5, 70, 21, 68, 67, 6, 65, 1] & & \\ \hline - $f^{*8}$ &[223, 190, 249, 254, 187, 251, 233, 232, 183, 230, 247, 180,& 9 & 72 \\ - & 227, 178, 240, 248, 237, 236, 253, 172, 203, 170, 201, 168, &&\\ - & 229, 166, 165, 244, 163, 242, 241, 192, 215, 220, 205, 216, &&\\ - & 218, 222, 221, 208, 213, 210, 212, 214, 219, 211, 217, 209, &&\\ - & 239, 202, 207, 140, 139, 234, 193, 204, 135, 196, 199, 132, &&\\ - & 194, 130, 225, 200, 159, 62, 185, 252, 59, 250, 169, 56, 191,&&\\ - & 246, 245, 52, 243, 50, 176, 48, 173, 238, 189, 44, 235, 42, &&\\ - & 137, 184, 231, 38, 37, 228, 35, 226, 177, 224, 151, 156, 141,&&\\ - & 152, 154, 158, 157, 144, 149, 146, 148, 150, 155, 147, 153, &&\\ - & 145, 175, 206, 143, 136, 11, 142, 129, 8, 7, 198, 197, 4, 195, &&\\ - & 2, 161, 160, 255, 124, 109, 108, 122, 126, 125, 112, 117, 114, &&\\ - & 116, 100, 123, 98, 97, 113, 79, 106, 111, 110, 99, 74, 121, 120,&&\\ - & 71, 118, 103, 101, 115, 66, 65, 104, 127, 90, 89, 94, 83, 91, 81,&&\\ - & 92, 95, 84, 87, 85, 82, 86, 80, 88, 77, 76, 93, 72, 107, 78, 105, &&\\ - & 64, 69, 102, 68, 70, 75, 67, 73, 96, 55, 58, 45, 188, 51, 186, 61, &&\\ - & 40, 119, 182, 181, 53, 179, 54, 33, 49, 15, 174, 47, 60, 171, && \\ - & 46, 57, 32, 167, 6, 36, 164, 43, 162, 1, 0, 63, 26, 25, 30, 19,&&\\ - & 27, 17, 28, 31, 20, 23, 21, 18, 22, 16, 24, 13, 10, 29, 14, 3, &&\\ - &138, 41, 12, 39, 134, 133, 5, 131, 34, 9, 128]&&\\ + \multirow{20}{0.5cm}{8} & $f^{*8}$ & +[223, 190, 249, 254, 187, 251, 233, 232, 183, 230, 247, 180,& +\multirow{20}{0.5cm}{9}& +\multirow{20}{0.5cm}{71}\\ +& & 227, 178, 240, 248, 237, 236, 253, 172, 203, 170, 201, 168,& & \\ +& & 229, 166, 165, 244, 163, 242, 241, 192, 215, 220, 205, 216,& & \\ +& & 218, 222, 221, 208, 213, 210, 212, 214, 219, 211, 217, 209,& & \\ +& & 239, 202, 207, 140, 139, 234, 193, 204, 135, 196, 199, 132,& & \\ +& & 194, 130, 225, 200, 159, 62, 185, 252, 59, 250, 169, 56, 191,& & \\ +& & 246, 245, 52, 243, 50, 176, 48, 173, 238, 189, 44, 235, 42,& & \\ +& & 137, 184, 231, 38, 37, 228, 35, 226, 177, 224, 151, 156, 141,& & \\ +& & 152, 154, 158, 157, 144, 149, 146, 148, 150, 155, 147, 153,& & \\ +& & 145, 175, 206, 143, 12, 11, 142, 129, 128, 7, 198, 197, 4, 195,& & \\ +& & 2, 161, 160, 255, 124, 109, 108, 122, 126, 125, 112, 117, 114,& & \\ +& & 116, 100, 123, 98, 97, 113, 79, 106, 111, 110, 99, 74, 121,& & \\ +& & 120, 71, 118, 103, 101, 115, 66, 65, 104, 127, 90, 89, 94, 83,& & \\ +& & 91, 81, 92, 95, 84, 87, 85, 82, 86, 80, 88, 77, 76, 93, 72,& & \\ +& & 107, 78, 105, 64, 69, 102, 68, 70, 75, 67, 73, 96, 55, 58, 45,& & \\ +& & 188, 51, 186, 61, 40, 119, 182, 181, 53, 179, 54, 33, 49, 15,& & \\ +& & 174, 47, 60, 171, 46, 57, 32, 167, 6, 36, 164, 43, 162, 1, 0,& & \\ +& & 63, 26, 25, 30, 19, 27, 17, 28, 31, 20, 23, 21, 18, 22, 16,& & \\ +& & 24, 13, 10, 29, 14, 3, 138, 41, 136, 39, 134, 133, 5, 131,& & \\ +& & 34, 9, 8]&&\\ \hline \end{tabular} \end{scriptsize} \end{center} -\label{table:functions}\caption{Fonctions avec matrices DSCC et le plus faible temps de mélange.} +\caption{Fonctions avec matrices DSCC et le plus faible temps de mélange}\label{table:functions} \end{table} Le tableau~\ref{table:functions} reprend une synthèse de fonctions qui ont été générées selon la méthode détaillée -à la section~\ref{sec:gen:dblstc}. -Pour chaque nombre $n=3$, $4$, $5$ -,$6$, tous les cycles hamiltoniens non isomorphes ont été générés. Pour les -valeur de $n=7$ et $8$, seules $10^{5}$ configurations ont été évaluées. Parmi +à la section~\ref{sec:hamiltonian}. +Pour chaque nombre $n=3$, $4$, $5$ et $6$, +tous les cycles hamiltoniens non isomorphes ont été générés. Pour les +valeur de $n=7$ et $8$, seules $10^{5}$ cycles ont été évalués. Parmi toutes les fonctions obtenues en enlevant du $n$-cube ces cycles, n'ont été retenues que celles qui minimisaient le temps de mélange relatif à une valeur de -$\epsilon$ fixée à $10^{-8}$. +$\epsilon$ fixée à $10^{-8}$ et pour un mode donné. Ce nombre d'itérations (\textit{i.e.}, ce temps de mélange) est stocké dans la troisième colonne sous la variable $b$. La variable $b'$ reprend le temps de mélange pour -l'algorithme~\ref{CI Algorithm}. - -Un premier résultat est que ce nouvel algorithme réduit grandement le nombre +l'algorithme~\ref{CI Algorithm}. +On note que pour un nombre $n$ de bits fixé et un mode donné d'itérations, +il peut avoir plusieurs fonctions minimisant ce temps de mélange. De plus, comme ce temps +de mélange est construit à partir de la matrice de Markov et que celle-ci dépend +du mode, une fonction peut être optimale pour un mode et ne pas l'être pour l'autre +(c.f. pour $n=5$). + +Un second résultat est que ce nouvel algorithme réduit grandement le nombre d'itérations suffisant pour obtenir une faible déviation par rapport à une distribution uniforme. On constate de plus que ce nombre décroit avec le nombre d'éléments alors qu'il augmente dans l'approche initiale où l'on marche. Cela s'explique assez simplement. Depuis une configuration initiale, le nombre -de configurations qu'on ne peut pas atteindre en une itération est de +de configurations qu'on ne peut pas atteindre en une itération est de: \begin{itemize} -\item $2^n-n$ en marchant, ce qui représente $\dfrac{2^n-n}{2^n} = 1-\dfrac{n}{2^n}$ +\item $2^n-n$ en unaire. Ceci représente un rapport de + $\dfrac{2^n-n}{2^n} = 1-\dfrac{n}{2^n}$ de toutes les configurations; plus $n$ est grand, plus ce nombre est proche de $1$, et plus grand devient le nombre - d'itérations suffisantes pour atteinte une déviation faible; -\item $2^n-2^{n-1}$ en sautant, soit la moitié de toutes les configurations + d'itérations nécessaires pour atteinte une déviation faible; +\item $2^n-2^{n-1}$ dans le cas généralisé, + soit la moitié de toutes les configurations quel que soit $n$; seul 1 bit reste constant tandis que tous les autres peuvent changer. Plus $n$ grandit, plus la proportion de bits constants diminue. \end{itemize} -Cependant, dans le cas où l'on saute, chaque itération a une complexité -plus élevée puisqu'il est nécessaire d'invoquer un générateur -de nombres pseudo-aléatoires entre 1 et $2^{n}$ tandis qu'il suffit -d'avoir un générateur entre 1 et $n$ dans le premier cas. +Cependant, dans le cas généralisé, chaque itération a une complexité +plus élevée puisqu'il est nécessaire d'invoquer un générateur +produisant un nombre pseudo-aléatoire dans $[2^{n}]$ tandis qu'il suffit +que celui-ci soit dans $[n]$ dans le cas unaire. +Pour comparer les deux approches, +on considère que le générateur aléatoire embarqué est binaire, \textit{i.e.} ne génère qu'un bit (0 ou 1). -Pour comparer les deux approches, on considère que le générateur aléatoire embarqué est binaire, \textit{i.e.} ne génère qu'un bit (0 ou 1). - -Lorsqu'on marche et qu'on effectue $i$ itérations, -à chaque itération, la stratégie génère un nombre entre -$1$ et $n$. -Elle fait donc $\ln(n)/\ln(2)$ appels à ce générateur en moyenne. -La démarche fait donc au total $i*\ln(n)/\ln(2)$ appels pour $n$ bits et -donc $i*\ln(n)/(n*\ln(2))$ appels pour 1 bit généré en moyenne. -Lorsqu'on saute et qu'on effectue $i'$ itérations, -à chaque itération, la stratégie génère un nombre entre +Dans le cas généralisé, si l'on effectue $b$ itérations, +à chacune d'elles, la stratégie génère un nombre entre $1$ et $2^n$. Elle fait donc $n$ appels à ce générateur. -On fait donc au total $i'*n$ appels pour $n$ bits et -donc $i'$ appels pour 1 bit généré en moyenne. +On fait donc au total $b*n$ appels pour $n$ bits et +donc $b$ appels pour 1 bit généré en moyenne. +Dans le cas unaire, si l'on effectue $b'$ itérations, +à chacune d'elle, la stratégie génère un nombre entre +$1$ et $n$. +Elle fait donc $\ln(n)/\ln(2)$ appels à ce générateur binaire en moyenne. +La démarche fait donc au total $b'*\ln(n)/\ln(2)$ appels pour $n$ bits et +donc $b'*\ln(n)/(n*\ln(2))$ appels pour 1 bit généré en moyenne. Le tableau~\ref{table:marchevssaute} donne des instances de ces valeurs pour $n \in\{4,5,6,7,8\}$ et les fonctions données au tableau~\ref{table:functions}. -On constate que le nombre d'appels par bit généré décroit avec $n$ dans la -seconde démarche et est toujours plus faible que celui de la première. +On constate que le nombre d'appels par bit généré décroit avec $n$ dans le +cas des itérations généralisées et est toujours plus faible +que celui des itérations unaires. @@ -800,9 +825,9 @@ $$ \hline \textrm{Itérations} & 4 & 5 & 6 & 7 & 8 \\ \hline -\textrm{Unaires} & 19.0 & 22.2905097109 & 23.6954895899 & 25.2661942985 & 27.0\\ +\textrm{Unaires} & 19.0 & 22.3 & 23.7 & 25.3 & 27.0\\ \hline -\textrm{Généralisées} & 17 & 13 & 11 & 10 & 9\\ +\textrm{Généralisées} & 17 & 13 & 11 & 10 & 9\\ \hline \end{array} $$ @@ -813,18 +838,43 @@ $$ -La qualité des séquences aléatoires a été évaluée à travers la suite -de tests statistiques développée pour les générateurs de nombres -pseudo-aléatoires par le +\section{Tests statistiques} + +La qualité des séquences aléatoires produites par +le générateur des itérations unaires ainsi que +celles issues des itérations généralisées a été évaluée à travers la suite +de tests statistiques développée par le \emph{National Institute of Standards and Technology} (NIST). +En interne, c'est l'implantation de l'algorithme de Mersenne Twister qui +permet de générer la stratégie aléatoire. + + + + Pour les 15 tests, le seuil $\alpha$ est fixé à $1\%$: une valeur qui est plus grande que $1\%$ signifie que la chaîne est considérée comme aléatoire avec une confiance de $99\%$. - Le tableau~\ref{fig:TEST} donne une vision synthétique de toutes - ces expérimentations. -L'expérience a montré notamment que toutes ces fonctions -passent avec succès cette batterie de tests. + + +Les tableau~\ref{fig:TEST:generalise} donnent +une vision synthétique de ces expérimentations. +Nous avons évalué les fonctions préfixées par +$f$ (respecitvement $g$) avec les générateurs issus des itérations +généralisées (resp. unaires). +Quelle que soit la méthode utilisée, on constate que chacun des +générateurs passe +avec succes le test de NIST. + +Interpréter ces resultats en concluant que ces générateurs sont +tous équivalents serait erroné: la meilleur des +méthodes basées sur le mode des itérations +généralisées (pour $n=8$ par exemple) +est au moins deux fois plus rapide que la meilleur de celles qui +sont basées sur les itérations unaires. + + + %%%%%%%%% Relancer pour n=6, n=7, n=8 %%%%%%%%% Recalculer le MT @@ -834,27 +884,106 @@ passent avec succès cette batterie de tests. \begin{table}[ht] \centering \begin{scriptsize} - \begin{tabular}{|*{5}{c|}} - \hline -Test & $f^{*4}$ & $f^{*5}$ & $f^{*6}$ & $f^{*7}$ \\ \hline -Fréquence (Monobit) & 0.025 (0.99) & 0.066 (1.0) & 0.319 (0.99) & 0.001 (1.0) \\ \hline -Fréquence / bloc & 0.401 (0.99) & 0.867 (1.0) & 0.045 (0.99) & 0.085 (0.99) \\ \hline -Somme Cumulé* & 0.219 (0.995) & 0.633 (1.0) & 0.635 (1.0) & 0.386 (0.99) \\ \hline -Exécution & 0.964 (0.98) & 0.699 (0.99) & 0.181 (0.99) & 0.911 (0.98) \\ \hline -Longue exécution dans un bloc & 0.137 (0.99) & 0.964 (1.0) & 0.145 (0.99) & 0.162 (0.98) \\ \hline -Rang & 0.616 (0.99) & 0.678 (1.0) & 0.004 (1.0) & 0.816 (1.0) \\ \hline -Fourier rapide & 0.048 (0.99) & 0.637 (0.97) & 0.366 (0.99) & 0.162 (0.99) \\ \hline -Patron sans superposition* & 0.479 (0.988) & 0.465 (0.989) & 0.535 (0.989) & 0.499 (0.989) \\ \hline -Patron avec superposition & 0.897 (1.0) & 0.657 (0.97) & 0.897 (0.98) & 0.236 (0.99) \\ \hline -Statistiques universelles & 0.991 (0.98) & 0.657 (0.98) & 0.102 (0.98) & 0.719 (0.98) \\ \hline -Entropie approchée (m=10) & 0.455 (1.0) & 0.964 (1.0) & 0.162 (1.0) & 0.897 (0.98) \\ \hline -Suite aléatoire * & 0.372 (0.993) & 0.494 (0.986) & 0.243 (0.992) & 0.258 (0.993) \\ \hline -Suite aléatoire variante * & 0.496 (0.989) & 0.498 (0.992) & 0.308 (0.983) & 0.310 (0.999) \\ \hline -Série* (m=10) & 0.595 (0.995) & 0.289 (0.975) & 0.660 (0.995) & 0.544 (0.99) \\ \hline -Complexité linaire & 0.816 (1.0) & 0.897 (0.98) & 0.080 (0.98) & 0.798 (1.0) \\ \hline - \end{tabular} + + +\begin{tabular}{|l|r|r|r|r|} + \hline +Test & $f^{*5}$ &$f^{*6}$ &$f^{*7}$ &$f^{*8}$ \\ \hline +Fréquence (Monobit)& 0.401 (0.97)& 0.924 (1.0)& 0.779 (0.98)& 0.883 (0.99)\\ \hline +Fréquence ds un bloc& 0.574 (0.98)& 0.062 (1.0)& 0.978 (0.98)& 0.964 (0.98)\\ \hline +Somme Cumulé*& 0.598 (0.975)& 0.812 (1.0)& 0.576 (0.99)& 0.637 (0.99)\\ \hline +Exécution& 0.998 (0.99)& 0.213 (0.98)& 0.816 (0.98)& 0.494 (1.0)\\ \hline +Longue exécution dans un bloc& 0.085 (0.99)& 0.971 (0.99)& 0.474 (1.0)& 0.574 (0.99)\\ \hline +Rang& 0.994 (0.96)& 0.779 (1.0)& 0.191 (0.99)& 0.883 (0.99)\\ \hline +Fourier rapide& 0.798 (1.0)& 0.595 (0.99)& 0.739 (0.99)& 0.595 (1.0)\\ \hline +Patron sans superposition*& 0.521 (0.987)& 0.494 (0.989)& 0.530 (0.990)& 0.520 (0.989)\\ \hline +Patron avec superposition& 0.066 (0.99)& 0.040 (0.99)& 0.304 (1.0)& 0.249 (0.98)\\ \hline +Statistiques universelles& 0.851 (0.99)& 0.911 (0.99)& 0.924 (0.96)& 0.066 (1.0)\\ \hline +Entropie approchée (m=10)& 0.637 (0.99)& 0.102 (0.99)& 0.115 (0.99)& 0.350 (0.98)\\ \hline +Suite aléatoire *& 0.573 (0.981)& 0.144 (0.989)& 0.422 (1.0)& 0.314 (0.984)\\ \hline +Suite aléatoire variante *& 0.359 (0.968)& 0.401 (0.982)& 0.378 (0.989)& 0.329 (0.985)\\ \hline +Série* (m=10)& 0.469 (0.98)& 0.475 (0.995)& 0.473 (0.985)& 0.651 (0.995)\\ \hline +Complexité linaire& 0.129 (1.0)& 0.494 (1.0)& 0.062 (1.0)& 0.739 (1.0)\\ \hline + +\end{tabular} \end{scriptsize} -\label{fig:TEST}\caption{Test de NIST réalisé sur les fonctions $f^*$ détaillées au tableau~\label{table:functions}} + + +\caption{Test de NIST pour les fonctions + du tableau~\ref{table:functions} selon les itérations généralisées}\label{fig:TEST:generalise} \end{table} + +\begin{table}[ht] + \centering + \begin{scriptsize} +\begin{tabular}{|l|r|r|r|r|} +\hline +Test & $g^{*5}$& $g^{*6}$& $f^{*7}$& $f^{*8}$\\ \hline +Fréquence (Monobit)& 0.236 (1.0)& 0.867 (0.99)& 0.437 (0.99)& 0.911 (1.0)\\ \hline +Fréquence ds un bloc& 0.129 (0.98)& 0.350 (0.99)& 0.366 (0.96)& 0.657 (1.0)\\ \hline +Somme Cumulé*& 0.903 (0.995)& 0.931 (0.985)& 0.863 (0.995)& 0.851 (0.995)\\ \hline +Exécution& 0.699 (0.98)& 0.595 (0.99)& 0.181 (1.0)& 0.437 (0.99)\\ \hline +Longue exécution dans un bloc& 0.009 (0.99)& 0.474 (0.97)& 0.816 (1.0)& 0.051 (1.0)\\ \hline +Rang& 0.946 (0.96)& 0.637 (0.98)& 0.494 (1.0)& 0.946 (1.0)\\ \hline +Fourier rapide& 0.383 (0.99)& 0.437 (1.0)& 0.616 (0.98)& 0.924 (0.99)\\ \hline +Patron sans superposition*& 0.466 (0.990)& 0.540 (0.989)& 0.505 (0.990)& 0.529 (0.991)\\ \hline +Patron avec superposition& 0.202 (0.96)& 0.129 (0.98)& 0.851 (0.99)& 0.319 (0.98)\\ \hline +Statistiques universelles& 0.319 (0.97)& 0.534 (0.99)& 0.759 (1.0)& 0.657 (0.99)\\ \hline +Entropie approchée (m=10)& 0.075 (0.97)& 0.181 (0.99)& 0.213 (0.98)& 0.366 (0.98)\\ \hline +Suite aléatoire *& 0.357 (0.986)& 0.569 (0.991)& 0.539 (0.987)& 0.435 (0.992)\\ \hline +Suite aléatoire variante *& 0.398 (0.989)& 0.507 (0.986)& 0.668 (0.991)& 0.514 (0.994)\\ \hline +Série* (m=10)& 0.859 (0.995)& 0.768 (0.99)& 0.427 (0.995)& 0.637 (0.98)\\ \hline +Complexité linaire& 0.897 (0.99)& 0.366 (0.98)& 0.153 (1.0)& 0.437 (1.0)\\ \hline + +\end{tabular} +\end{scriptsize} + + +\caption{Test de NIST pour les fonctions + du tableau~\ref{table:functions} selon les itérations unaires}\label{fig:TEST:unaire} +\end{table} + + +\begin{table}[ht] + \centering + \begin{scriptsize} + +\begin{tabular}{|l|r|r|r|r|} + \hline +Test & 5 bits& 6 bits & 7 bits & 8bits \\ \hline +Fréquence (Monobit)& 0.289 (1.0)& 0.437 (1.0)& 0.678 (1.0)& 0.153 (0.99)\\ \hline +Fréquence ds un bloc& 0.419 (1.0)& 0.971 (0.98)& 0.419 (0.99)& 0.275 (1.0)\\ \hline +Somme Cumulé*& 0.607 (0.99)& 0.224 (0.995)& 0.645 (0.995)& 0.901 (0.99)\\ \hline +Exécution& 0.129 (0.99)& 0.005 (0.99)& 0.935 (0.98)& 0.699 (0.98)\\ \hline +Longue exécution dans un bloc& 0.514 (1.0)& 0.739 (0.99)& 0.994 (1.0)& 0.834 (0.99)\\ \hline +Rang& 0.455 (0.97)& 0.851 (0.99)& 0.554 (1.0)& 0.964 (0.99)\\ \hline +Fourier rapide& 0.096 (0.98)& 0.955 (0.99)& 0.851 (0.97)& 0.037 (1.0)\\ \hline +Patron sans superposition*& 0.534 (0.990)& 0.524 (0.990)& 0.508 (0.987)& 0.515 (0.99)\\ \hline +Patron avec superposition& 0.699 (0.99)& 0.616 (0.95)& 0.071 (1.0)& 0.058 (1.0)\\ \hline +Statistiques universelles& 0.062 (0.99)& 0.071 (1.0)& 0.637 (1.0)& 0.494 (0.98)\\ \hline +Entropie approchée (m=10)& 0.897 (0.99)& 0.383 (0.99)& 0.366 (1.0)& 0.911 (0.99)\\ \hline +Suite aléatoire *& 0.365 (0.983)& 0.442 (0.994)& 0.579 (0.992)& 0.296 (0.993)\\ \hline +Suite aléatoire variante *& 0.471 (0.978)& 0.559 (0.992)& 0.519 (0.987)& 0.340 (0.995)\\ \hline +Série* (m=10)& 0.447 (0.985)& 0.298 (0.995)& 0.648 (1.0)& 0.352 (0.995)\\ \hline +Complexité linaire& 0.005 (0.98)& 0.534 (0.99)& 0.085 (0.97)& 0.996 (1.0)\\ \hline + +\end{tabular} + + + + + + + + + + + \end{scriptsize} + + +\caption{Test de NIST pour l'algorithme de Mersenne Twister}\label{fig:TEST:Mersenne} +\end{table} + + %