X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hdrcouchot.git/blobdiff_plain/3759a997c005ffb313be135f98820410cb6061b4..ab1271f8b9509a86f3434c2389be47fe3a1c4d04:/15RairoGen.tex diff --git a/15RairoGen.tex b/15RairoGen.tex index a57e19f..38920d8 100644 --- a/15RairoGen.tex +++ b/15RairoGen.tex @@ -8,7 +8,7 @@ comme un générateur aléatoire. Ce chapitre présente donc une application directe de la théorie développée ci-avant -à la génération de nombres pseudo aléatoires. +à la génération de nombres pseudo-aléatoires. La section~\ref{sub:prng:algo} présente tout d'abord l'algorithme de PRNG. La contrainte de distribution uniforme de la sortie est discutée dans cette section. @@ -17,7 +17,7 @@ section~\ref{prng:unaire:chaos}. La section~\ref{sub:prng:algo} a été publiée à ~\cite{bcgw11:ip,bcgr11:ip}. -\section{ Nombres pseudo aléatoires construits par itérations unaires}\label{sub:prng:algo} +\section{ Nombres pseudo-aléatoires construits par itérations unaires}\label{sub:prng:algo} @@ -44,8 +44,8 @@ return $x$\; \end{algorithm} \subsection{Algorithme d'un générateur} -On peut penser à construire un générateur de nombres pseudo -aléatoires comme dans l'algorithme~\ref{CI Algorithm} donné ci-dessous. +On peut penser à construire un générateur de nombres +pseudo-aléatoires comme dans l'algorithme~\ref{CI Algorithm} donné ci-dessous. Celui-ci prend en entrée: une fonction $f$; @@ -56,7 +56,7 @@ la fonction $F_{f_u}$ (équation~\ref{eq:iterations:unaires} vue au chapitre~\ref{chap:carachaos}) et correspondant à des itérations unaires. En interne, il exploite un algorithme de génération -de nombres pseudo aléatoires donné en paramètre. +de nombres pseudo-aléatoires donné en paramètre. Cela peut être n'importe quel PRNG (XORshift, Mersenne-Twister) dont la sortie est uniformément distribuée. Notre approche vise a donner des propriétés de chaos à ce générateur embarqué. @@ -139,7 +139,7 @@ et les chaînes de Markov. Montrons sur un exemple jouet à deux éléments que ce théorème permet de vérifier si la sortie d'un générateur de -nombres pseudo aléatoires est uniformément distribuée ou non. +nombres pseudo-aléatoires est uniformément distribuée ou non. Soient alors $g$ et $h$ deux fonctions de $\Bool^2$ définies par $g(x_1,x_2)=(\overline{x_1},x_1.\overline{x_2}) $ et $h(x_1,x_2)=(\overline{x_1},x_1\overline{x_2}+\overline{x_1}x_2)$. @@ -149,7 +149,7 @@ Leurs graphes d'itérations sont donc fortement connexes, ce que l'on peut vérifier aux figures~\ref{fig:g:iter} et~\ref{fig:h:iter}. \textit{A priori}, ces deux fonctions pourraient être intégrées -dans un générateur de nombres pseudo aléatoires. Montrons que ce n'est pas le cas pour $g$ et +dans un générateur de nombres pseudo-aléatoires. Montrons que ce n'est pas le cas pour $g$ et que cela l'est pour $h$. @@ -283,10 +283,10 @@ Alors d'après le théorème~\ref{th}, pour n'importe quel vecteur initial de probabilités $\pi^0$, on a $\lim_{k \to \infty} \pi^0 M^k_g = \pi_g$ et $\lim_{k \to \infty} \pi^0 M^k_h = \pi_h$. -Ainsi la chaîne de Markov associé à $h$ tend vers une +Ainsi la chaîne de Markov associée à $h$ tend vers une distribution uniforme, contrairement à celle associée à $g$. On en déduit que $g$ ne devrait pas être itérée dans -un générateur de nombres pseudo aléatoires. +un générateur de nombres pseudo-aléatoires. Au contraire, $h$ devrait pouvoir être embarquée dans l'algorithme~\ref{CI Algorithm}, pour peu que le nombre $b$ d'itérations entre deux mesures successives @@ -303,7 +303,7 @@ On énonce directement le théorème suivant dont la preuve est donnée en annex définie par $M = \dfrac{1}{n} \check{M}$. Si $\textsc{giu}(f)$ est fortement connexe, alors - la sortie du générateur de nombres pseudo aléatoires détaillé par + la sortie du générateur de nombres pseudo-aléatoires détaillé par l'algorithme~\ref{CI Algorithm} suit une loi qui tend vers la distribution uniforme si et seulement si $M$ est une matrice doublement stochastique. @@ -325,7 +325,7 @@ Expliquons enfin comment a été calculé le nombre de la troisième colonne utilisé comme le paramètre $b$ dans l'algorithme~\ref{CI Algorithm}. -Soit $e_i$ le $i^{\textrm{ème}}$ vecteur la base canonique de $\R^{2^{n}}$. +Soit $e_i$ le $i^{\textrm{ème}}$ vecteur de la base canonique de $\R^{2^{n}}$. Chacun des éléments $v_j$, $1 \le j \le 2^n$, du vecteur $e_i M_f^t$ représente la probabilité d'être dans la configuration $j$ après $t$ étapes du processus de Markov @@ -431,7 +431,7 @@ $\mathcal{F}_{16}$ &14, 15, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 La qualité des séquences aléatoires a été évaluée à travers la suite de tests statistiques développée pour les générateurs de nombres -pseudo aléatoires par le +pseudo-aléatoires par le \emph{National Institute of Standards and Technology} (NIST). L'expérience a montré notamment que toutes ces fonctions passent avec succès cette batterie de tests.