X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hdrcouchot.git/blobdiff_plain/3759a997c005ffb313be135f98820410cb6061b4..fcbc9202a51285ff17060f4d330eca0d57b2a3c1:/oxford.tex?ds=sidebyside diff --git a/oxford.tex b/oxford.tex index 5cc17c0..ae247ee 100644 --- a/oxford.tex +++ b/oxford.tex @@ -1,10 +1,11 @@ -La propriété de régularité des fonctions chaotiques est à l'origine du marquage de documents numériques: de tout média, même tronqué, on peut réextraire la -marque. +La propriété de transitivité des fonctions chaotiques est à l'origine du marquage de documents numériques: grâce à cette propriété, la marque est diffusée +sur tout le support. Ainsi, de tout média, même tronqué, +on peut la réextraire. Dans ce chapitre, le processus d'embarquement d'un message dans un média est formalisé en section~\ref{sec:watermarking:formulation}. -La sécurité des approches de watermarking est étudiée selon deux approches: -l'approche probabiliste (section~\ref{sec:watermarking:security:probas}) -et l'approche chaotique (section~\ref{sec:watermarking:security:chaos}). +La sécurité des approches de watermarking est étudiée selon deux critères: +probabiliste d'une part (section~\ref{sec:watermarking:security:probas}) +et chaotique (section~\ref{sec:watermarking:security:chaos}) d'autre part. Une proposition d'embarquement dans le domaine fréquentiel est abordée en section~\ref{sec:watermarking:frequentiel}. @@ -16,7 +17,7 @@ l'image marquée. La section~\ref{sec:watermarking:extension} propose une solution à ce problème. Les trois premières sections de ce chapitre sont une reformulation -du chapitre 22 de~\cite{guyeux10}. Elles ont été publiées à~\cite{bcg11:ij}. +du chapitre 22 de~\cite{guyeuxphd}. Elles ont été publiées à~\cite{bcg11:ij}. L'extension a quant à elle été publiée dans~\cite{bcfg+13:ip}. @@ -493,7 +494,7 @@ de retrouver le contenu de la marque à partir de l'image marquée. C'est l'objectif de l'algorithme présenté dans cette section et introduit dans~\cite{fgb11:ip}. Pour des raisons de lisibilité, il n'est pas -présenté pas dans le formalisme de la première section et +présenté dans le formalisme de la première section et est grandement synthétisé. Il a cependant été prouvé comme étant chaos-sécure~\cite{fgb11:ip}. @@ -501,7 +502,7 @@ Il a cependant été prouvé comme étant chaos-sécure~\cite{fgb11:ip}. Commençons par quelques conventions de notations: \begin{itemize} -\item $\mathbb{S}_\mathsf{k}$ est l'ensemble des stratégies unaire sur $[k]$; +\item $\mathbb{S}_\mathsf{k}$ est l'ensemble des stratégies unaires sur $[k]$; \item $m^0 \in \mathbb{B}^{\mathsf{P}}$ est un vecteur de $\mathsf{P}$ bits représentant la marque; \item comme précédemment, @@ -510,10 +511,10 @@ Commençons par quelques conventions de notations: \item $S_p \in \mathbb{S}_\mathsf{N}$ est la \emph{stratégie de place} et définit quel élément de $x$ est modifié à chaque itération; - \item $S_c \in \mathbb{S}_\mathsf{P}$ est la \textbf{stratégie de choix} + \item $S_c \in \mathbb{S}_\mathsf{P}$ est la \emph{stratégie de choix} qui définit quel indice du vecteur de marque est embarqué à chaque itération; - \item $S_m \in \mathbb{S}_\mathsf{P}$ est la \textbf{stratégie de mélange} + \item $S_m \in \mathbb{S}_\mathsf{P}$ est la \emph{stratégie de mélange} qui précise quel élément de la marque est inversé à chaque itération. \end{itemize} @@ -552,8 +553,8 @@ m_j^{n-1} & \text{ si }S_m^n\neq j \\ \noindent où $\overline{m_j^{n-1}}$ est la négation booléenne de $m_j^{n-1}$. On impose de plus la contrainte suivante. Soit $\Im(S_p) = \{S^1_p, S^2_p, \ldots, S^l_p\}$ -l'ensemble de cardinalité $k \leq l$ (les doublons sont supprimés). -qui contient la liste des indices $i$, $1 \le i \le p$, +l'ensemble de cardinalité $k \leq l$ (les doublons sont supprimés) +qui contient la liste des indices $i$, $1 \le i \le \mathsf{N}$, tels que $x_i$ a été modifié. On considère $\Im(S_c)_{|D}= \{S^{d_1}_c, S^{d_2}_c, \ldots, S^{d_k}_c\}$ où