X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hdrcouchot.git/blobdiff_plain/46fc71ad146f83c82660e358a1a1bc2ccc0f00e6..8e936c00e392b3c17977d1f959b601dbf17bbf0e:/14Secrypt.tex diff --git a/14Secrypt.tex b/14Secrypt.tex index e160bc3..a04c11e 100644 --- a/14Secrypt.tex +++ b/14Secrypt.tex @@ -13,13 +13,13 @@ graphe d'itérations, ce qui revient à supprimer en chaque n{\oe}ud de ce graph arête sortante et une arête entrante. -This aim of this section is to show -that finding DSSC matrices from a hypercube -is a typical finite domain satisfaction -problem, classically denoted as -Constraint Logic Programming on Finite Domains (CLPFD). -This part is addressed in the first section. Next, we analyse the first -results to provide a generation of DSSC matrices with small mixing times. +% This aim of this section is to show +% that finding DSSC matrices from a hypercube +% is a typical finite domain satisfaction +% problem, classically denoted as +% Constraint Logic Programming on Finite Domains (CLPFD). +% This part is addressed in the first section. Next, we analyse the first +% results to provide a generation of DSSC matrices with small mixing times. \section{Programmation logique par contraintes sur des domaines finis} Tout d'abord, soit ${\mathsf{N}}$ le nombre d'éléments. @@ -567,6 +567,4 @@ Par exemple, pour $n=3$, l'ensemble $\textit{Set}(6)$ vaudraitt $\{3,2\}$. On remarque aussi que l'argument de la fonction $\textit{Random}$ passe de $n$ à $2^n$. -Dans ce qui suit, on va étudier cet algorithme comparativement à -l'algorithme~\ref{CI Algorithm}.