X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hdrcouchot.git/blobdiff_plain/596713f36ad5e56e5860473b80cfcd4821a616c8..749714e242c186d9017fa85964d6c67edf1bf4d1:/main.tex diff --git a/main.tex b/main.tex index e81e5e3..1c00650 100644 --- a/main.tex +++ b/main.tex @@ -13,11 +13,17 @@ \usepackage{dsfont} \usepackage{graphicx} \usepackage{listings} +\usepackage{tikz} +\usepackage{pgfplots} +\usepgfplotslibrary{groupplots} + %\usepackage[font=footnotesize]{subfig} \usepackage[utf8]{inputenc} \usepackage{thmtools, thm-restate} \usepackage{multirow} \usepackage{algorithm2e} +\usepackage{mathtools} + %\declaretheorem{theorem} %%-------------------- @@ -131,13 +137,27 @@ \def \P {\mathbb{P}} \def \ov {\overline} \def \ts {\tau_{\rm stop}} - +\def\rl{{^{.}}} + +\DeclarePairedDelimiter\abs{\lvert}{\rvert}% +\DeclarePairedDelimiter\norm{\lVert}{\rVert}% + +% Swap the definition of \abs* and \norm*, so that \abs +% and \norm resizes the size of the brackets, and the +% starred version does not. +\makeatletter +\let\oldabs\abs +\def\abs{\@ifstar{\oldabs}{\oldabs*}} +% +\let\oldnorm\norm +\def\norm{\@ifstar{\oldnorm}{\oldnorm*}} +\makeatother \newtheorem{theorem}{Théorème} \newtheorem{lemma}{Lemme} \newtheorem{corollary}{Corollaire} \newtheorem*{xpl}{Exemple} -\newtheorem*{Proof}{Preuve} + \newtheorem{Def}{Définition} \begin{document} @@ -152,22 +172,31 @@ Blabla blabla. \mainmatter -\part{Réseaux Discrets} +\part{Réseaux discrets} \chapter{Iterations discrètes de réseaux booléens} -\JFC{chapeau à refaire} -\section{Formalisation} + +Ce chapitre formalise tout d'abord ce qu'est +un réseau booléen (section~\ref{sec:sdd:formalisation}. On y revoit +les différents modes opératoires, leur représentation à l'aide de +graphes et les résultats connus de convergence). +Ce chapitre montre ensuite à la section~\ref{sec:sdd:mixage} +comment combiner ces modes pour converger aussi +souvent, mais plus rapidement vers un point fixe. Les deux +dernières sections ont fait l'objet du rapport~\cite{BCVC10:ir}. + +\section{Formalisation}\label{sec:sdd:formalisation} \input{sdd} -\section{Combinaisons synchrones et asynchrones} +\section{Combinaisons synchrones et asynchrones}\label{sec:sdd:mixage} \input{mixage} \section{Conclusion} -\JFC{Conclusion à refaire} Introduire de l'asynchronisme peut permettre de réduire le temps d'exécution global, mais peut aussi introduire de la divergence. -Dans ce chapitre, nous avons exposé comment construire un mode combinant les +Dans ce chapitre, après avoir introduit les bases sur les réseaux bouléens, +nous avons exposé comment construire un mode combinant les avantage du synchronisme en terme de convergence avec les avantages de l'asynchronisme en terme de vitesse de convergence. @@ -189,12 +218,19 @@ au chaos} discrets chaotiques]{Caracterisation des systèmes discrets chaotiques pour les schémas unaires et généralisés}\label{chap:carachaos} -La première section rappelle ce que sont les systèmes dynamiques chaotiques. -Dire que cette caractérisation dépend du type de stratégie : unaire (TIPE), -généralisée (TSI). Pour chacune d'elle, -on introduit une distance différente. - -On montre qu'on a des résultats similaires. +La suite de ce document se focalise sur des systèmes dynamiques discrets qui ne +convergent pas. Parmi ceux-ci se trouvent ceux qui sont \og chaotiques\fg{}. +La première section de ce chapitre rappelle ce que sont les systèmes +dynamiques chaotiques et leur caractéristiques. +La section~\ref{sec:TIPE12}, qui est une reformulation de~\cite{guyeux10}, +se focalise sur le schéma unaire. Elle est rappelée pour avoir un document se +suffisant à lui-même. +La section~\ref{sec:chaos:TSI} étend ceci au mode généralisé. Pour chacun de ces modes, +une métrique est définie. Finalement, la section~\ref{sec:11FCT} +exhibe des conditions suffisantes premettant d'engendrer +des fonctions chaotiques seon le mode unaire. +Les sections~\ref{sec:TIPE12} et~\ref{sec:11FCT} ont été publiées +dans~\cite{bcg11:ij,bcgr11:ip}. \section{Systèmes dynamiques chaotiques selon Devaney} \label{subsec:Devaney} @@ -203,13 +239,23 @@ On montre qu'on a des résultats similaires. \section{Schéma unaire}\label{sec:TIPE12} \input{12TIPE} -\section{Schéma généralisé} +\section{Schéma généralisé}\label{sec:chaos:TSI} \input{15TSI} \section{Générer des fonctions chaotiques}\label{sec:11FCT} \input{11FCT} +\section{Conclusion} +Ce chapitre a montré que les itérations unaires sont chaotiques si +et seulement si le graphe $\textsc{giu}(f)$ est fortement connexe et +que les itérations généralisées sont chaotiques si +et seulement si le graphe $\textsc{gig}(f)$ est aussi fortement connexe. +On dispose ainsi à priori d'une collection infinie de fonctions chaotiques. +Le chapitre suivant s'intéresse à essayer de prédire le comportement +de telles fonctions. + + \chapter{Prédiction des systèmes chaotiques} \input{chaosANN} @@ -230,7 +276,6 @@ On montre qu'on a des résultats similaires. \chapter{Des embarquement préservant le chaos}\label{chap:watermarking} -% OXFORD \input{oxford} \chapter{Une démarche de marquage de PDF} @@ -240,6 +285,10 @@ On montre qu'on a des résultats similaires. \chapter{Une démarches plus classique de dissimulation: STABYLO} \input{stabylo} +\chapter{Schéma de stéganographie: les dérivées du second ordre} + \input{stegoyousra} + + \part{Conclusion et Perspectives} @@ -291,7 +340,7 @@ du chapitre 8} \appendix -\chapter{Preuves sur les SDD} +\chapter{Preuves sur les réseaux discrets} \section{Convergence du mode mixe}\label{anx:mix} \input{annexePreuveMixage} @@ -306,13 +355,12 @@ du chapitre 8} \chapter{Preuves sur les systèmes chaotiques} -\section{Continuité de $G_f$ dans $(\mathcal{X}_u,d)$}\label{anx:cont} -\input{annexecontinuite.tex} +%\section{Continuité de $G_f$ dans $(\mathcal{X}_u,d)$}\label{anx:cont} +%\input{annexecontinuite.tex} -\section{Caractérisation des fonctions $f$ rendant chaotique $G_{f_u}$ dans $(\mathcal{X}_u,d)$}\label{anx:chaos:unaire} -\input{caracunaire.tex} - +%\section{Caractérisation des fonctions $f$ rendant chaotique $G_{f_u}$ dans $(\mathcal{X}_u,d)$}\label{anx:chaos:unaire} +%\input{caracunaire.tex} \section{Preuve que $d$ est une distance sur $\mathcal{X}_g$}\label{anx:distance:generalise} \input{preuveDistanceGeneralisee} @@ -322,12 +370,17 @@ du chapitre 8} \input{caracgeneralise.tex} -\section{Théorème~\ref{th:Adrien}}\label{anx:sccg} +\section{Conditions suffisantes pour un $\textsc{giu}(f)$ fortement connexe \label{anx:sccg}} \input{annexesccg} \chapter{Preuves sur les générateurs de nombres pseudo-aléatoires}\label{anx:generateur} \input{annexePreuveDistribution} + +\section{Codes de Gray équilibrés par induction} +\input{annexePreuveGrayEquilibre} + +\section{Majoration du temps d'arrêt} \input{annexePreuveStopping} \chapter{Preuves sur le marquage de média}\label{anx:marquage} @@ -341,7 +394,7 @@ du chapitre 8} \input{annexePreuveMarquageCorrectioncompletude} \backmatter -\section{Complexité d'Algorithmes de stéganographie} +\section{Complexités d'algorithmes de stéganographie} \label{anx:preuve:cplxt} \input{annexePreuvesComplexiteStego}