X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hdrcouchot.git/blobdiff_plain/714ce29544c8cc7bf8b4530d28352fb1a5306991..54b170f26af2fb6bf6150f003918ac5992314293:/main.tex diff --git a/main.tex b/main.tex index 27c159c..4ef11c8 100644 --- a/main.tex +++ b/main.tex @@ -16,6 +16,8 @@ %\usepackage[font=footnotesize]{subfig} \usepackage[utf8]{inputenc} \usepackage{thmtools, thm-restate} +\usepackage{multirow} +\usepackage{algorithm2e} %\declaretheorem{theorem} %%-------------------- @@ -32,7 +34,8 @@ %%-------------------- %% Set the author of the HDR -\addauthor[first.name@utbm.fr]{First}{Name} +\addauthor[couchot@femto-st.fr]{Jean-François}{Couchot} + %%-------------------- %% Add a member of the jury @@ -121,8 +124,18 @@ \newcommand{\dom}[0]{\ensuremath{\textit{dom}}} \newcommand{\eqNode}[0]{\ensuremath{{\mathcal{R}}}} + +\newcommand {\tv}[1] {\lVert #1 \rVert_{\rm TV}} +\def \top {1.8} +\def \topt {2.3} +\def \P {\mathbb{P}} +\def \ov {\overline} +\def \ts {\tau_{\rm stop}} + + \newtheorem{theorem}{Théorème} \newtheorem{lemma}{Lemme} +\newtheorem{corollary}{Corollaire} \newtheorem*{xpl}{Exemple} \newtheorem*{Proof}{Preuve} \newtheorem{Def}{Définition} @@ -141,18 +154,14 @@ Blabla blabla. \part{Réseaux Discrets} - - \chapter{Iterations discrètes de réseaux booléens} \JFC{chapeau à refaire} \section{Formalisation} \input{sdd} - \section{Combinaisons synchrones et asynchrones} \input{mixage} - \section{Conclusion} \JFC{Conclusion à refaire} @@ -165,7 +174,7 @@ de l'asynchronisme en terme de vitesse de convergence. -\chapter[Preuve de convergence de systèmes booléens]{Preuve automatique de convergence}\label{chap:promela} +\chapter{Preuve automatique de convergence}\label{chap:promela} \input{modelchecking} @@ -176,8 +185,9 @@ de l'asynchronisme en terme de vitesse de convergence. \part{Des systèmes dynamiques discrets au chaos} -\chapter{Characterisation des systèmes - discrets chaotiques} +\chapter[Caracterisation des systèmes + discrets chaotiques]{Caracterisation des systèmes + discrets chaotiques pour les schémas unaires et généralisés}\label{chap:carachaos} La première section rappelle ce que sont les systèmes dynamiques chaotiques. Dire que cette caractérisation dépend du type de stratégie : unaire (TIPE), @@ -190,29 +200,39 @@ On montre qu'on a des résultats similaires. \label{subsec:Devaney} \input{devaney} -\section{Schéma unaire} +\section{Schéma unaire}\label{sec:TIPE12} \input{12TIPE} \section{Schéma généralisé} \input{15TSI} -générer des fonctions vérifiant ceci (TIPE12 juste sur le résultat d'adrien). +\section{Générer des fonctions chaotiques}\label{sec:11FCT} +\input{11FCT} \chapter{Prédiction des systèmes chaotiques} +\input{chaosANN} + + -13 JournalMichel +\part{Applications à la génération de nombres pseudo aléatoires} +\chapter{Caractérisation des générateurs chaotiques} +\input{15RairoGen} +\chapter{Les générateurs issus des codes de Gray} +\input{14Secrypt} +\chapter{Quelques expérimentations} +\part{Conclusion et Perspectives} + - \part{Conclusion et Perspectives} \JFC{Perspectives pour SDD->Promela} Among drawbacks of the method, one can argue that bounded delays is only @@ -226,6 +246,26 @@ One challenge of this work should consist in weakening this constraint. We plan as future work to take into account other automatic approaches to discharge proofs notably by deductive analysis~\cite{CGK05}. +\JFC{Perspective ANN} + +In future work we intend to enlarge the comparison between the +learning of truly chaotic and non-chaotic behaviors. Other +computational intelligence tools such as support vector machines will +be investigated too, to discover which tools are the most relevant +when facing a truly chaotic phenomenon. A comparison between learning +rate success and prediction quality will be realized. Concrete +consequences in biology, physics, and computer science security fields +will then be stated. +Ajouter lefait que le codede gray n'est pas optimal. +On pourrait aussi travailler à établir un classement qui préserverait +le fait que deux configurations voisines seraient représentées +par deux entiers voisins. Par optimisation? + +\JFC{Perspectives pour les générateurs} : marcher ou sauter... comment on +pourrait étendre, ce que l'on a déjà, ce qu'il reste à faire. +% TSI 2015 + + % \chapter{Conclusion} @@ -249,31 +289,29 @@ to discharge proofs notably by deductive analysis~\cite{CGK05}. \chapter{Preuves sur les systèmes chaotiques} -\section{Continuité de $G_f$ dans $(\mathcal{X},d)$}\label{anx:cont} +\section{Continuité de $G_f$ dans $(\mathcal{X}_u,d)$}\label{anx:cont} \input{annexecontinuite.tex} - - -\section{Caractérisation des fonctions $f$ rendant chaotique $G_f$ dans $(\mathcal{X},d)$}\label{anx:chaos:unaire} +\section{Caractérisation des fonctions $f$ rendant chaotique $G_{f_u}$ dans $(\mathcal{X}_u,d)$}\label{anx:chaos:unaire} \input{caracunaire.tex} -\section{Preuve que $d$ est une distance sur $\mathcal{X}$}\label{anx:distance:generalise} +\section{Preuve que $d$ est une distance sur $\mathcal{X}_g$}\label{anx:distance:generalise} \input{preuveDistanceGeneralisee} -\section{Caractérisation des fonctions $f$ rendant chaotique $G_f$ dans $(\mathcal{X},d)$}\label{anx:chaos:generalise} +\section{Caractérisation des fonctions $f$ rendant chaotique $G_{f_g}$ dans $(\mathcal{X}_g,d)$}\label{anx:chaos:generalise} \input{caracgeneralise.tex} - - \section{Théorème~\ref{th:Adrien}}\label{anx:sccg} \input{annexesccg} - +\chapter{Preuves sur les générateurs de nombres pseudo-aléatoires}\label{anx:generateur} +\input{annexePreuveDistribution} +\input{annexePreuveStopping} \backmatter