X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hdrcouchot.git/blobdiff_plain/714ce29544c8cc7bf8b4530d28352fb1a5306991..b7ce5574dead7f7c53fe6362ac1655d8d54fcd0c:/main.tex diff --git a/main.tex b/main.tex index 27c159c..fdcf059 100644 --- a/main.tex +++ b/main.tex @@ -16,6 +16,7 @@ %\usepackage[font=footnotesize]{subfig} \usepackage[utf8]{inputenc} \usepackage{thmtools, thm-restate} +\usepackage{multirow} %\declaretheorem{theorem} %%-------------------- @@ -141,18 +142,14 @@ Blabla blabla. \part{Réseaux Discrets} - - \chapter{Iterations discrètes de réseaux booléens} \JFC{chapeau à refaire} \section{Formalisation} \input{sdd} - \section{Combinaisons synchrones et asynchrones} \input{mixage} - \section{Conclusion} \JFC{Conclusion à refaire} @@ -165,7 +162,7 @@ de l'asynchronisme en terme de vitesse de convergence. -\chapter[Preuve de convergence de systèmes booléens]{Preuve automatique de convergence}\label{chap:promela} +\chapter{Preuve automatique de convergence}\label{chap:promela} \input{modelchecking} @@ -176,8 +173,9 @@ de l'asynchronisme en terme de vitesse de convergence. \part{Des systèmes dynamiques discrets au chaos} -\chapter{Characterisation des systèmes - discrets chaotiques} +\chapter[Caracterisation des systèmes + discrets chaotiques]{Caracterisation des systèmes + discrets chaotiques pour les schémas unaires et généralisés} La première section rappelle ce que sont les systèmes dynamiques chaotiques. Dire que cette caractérisation dépend du type de stratégie : unaire (TIPE), @@ -190,18 +188,20 @@ On montre qu'on a des résultats similaires. \label{subsec:Devaney} \input{devaney} -\section{Schéma unaire} +\section{Schéma unaire}\label{sec:TIPE12} \input{12TIPE} \section{Schéma généralisé} \input{15TSI} -générer des fonctions vérifiant ceci (TIPE12 juste sur le résultat d'adrien). +\section{Générer des fonctions chaotiques} +\input{11FCT} + \chapter{Prédiction des systèmes chaotiques} -13 JournalMichel +\input{chaosANN} @@ -212,7 +212,7 @@ générer des fonctions vérifiant ceci (TIPE12 juste sur le résultat d'adrien) - \part{Conclusion et Perspectives} +\part{Conclusion et Perspectives} \JFC{Perspectives pour SDD->Promela} Among drawbacks of the method, one can argue that bounded delays is only @@ -249,26 +249,22 @@ to discharge proofs notably by deductive analysis~\cite{CGK05}. \chapter{Preuves sur les systèmes chaotiques} -\section{Continuité de $G_f$ dans $(\mathcal{X},d)$}\label{anx:cont} +\section{Continuité de $G_f$ dans $(\mathcal{X}_u,d)$}\label{anx:cont} \input{annexecontinuite.tex} - - -\section{Caractérisation des fonctions $f$ rendant chaotique $G_f$ dans $(\mathcal{X},d)$}\label{anx:chaos:unaire} +\section{Caractérisation des fonctions $f$ rendant chaotique $G_{f_u}$ dans $(\mathcal{X}_u,d)$}\label{anx:chaos:unaire} \input{caracunaire.tex} -\section{Preuve que $d$ est une distance sur $\mathcal{X}$}\label{anx:distance:generalise} +\section{Preuve que $d$ est une distance sur $\mathcal{X}_g$}\label{anx:distance:generalise} \input{preuveDistanceGeneralisee} -\section{Caractérisation des fonctions $f$ rendant chaotique $G_f$ dans $(\mathcal{X},d)$}\label{anx:chaos:generalise} +\section{Caractérisation des fonctions $f$ rendant chaotique $G_{f_g}$ dans $(\mathcal{X}_g,d)$}\label{anx:chaos:generalise} \input{caracgeneralise.tex} - - \section{Théorème~\ref{th:Adrien}}\label{anx:sccg} \input{annexesccg}