X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hdrcouchot.git/blobdiff_plain/75aa438e61284f634375e2c1e62c79f2af12678f..749714e242c186d9017fa85964d6c67edf1bf4d1:/15RairoGen.tex?ds=sidebyside diff --git a/15RairoGen.tex b/15RairoGen.tex index 06f84b1..d905e51 100644 --- a/15RairoGen.tex +++ b/15RairoGen.tex @@ -6,25 +6,17 @@ le mot $x^b$ devrait \og sembler ne plus dépendre\fg{} de $x^0$. On peut penser à exploiter une de ces fonctions $G_f$ comme un générateur aléatoire. -Ce chapitre présente une application directe +Ce chapitre présente donc une application directe de la théorie développée ci-avant à la génération de nombres pseudo aléatoires. +La section~\ref{sub:prng:algo} +présente tout d'abord l'algorithme de PRNG. La contrainte de +distribution uniforme de la sortie est discutée dans cette section. +La chaoticité du générateur est ensuite étudiée en +section~\ref{prng:unaire:chaos}. +La section~\ref{sub:prng:algo} a été publiéeà~\cite{bcgw11:ip,bcgr11:ip}. -La suite de ce document donnera -une condition nécessaire est suffisante pour que -cette propriété soit satisfaite. - - -On présente tout d'abord le générateur -basé sur des fonctions chaotiques (section~\ref{sub:prng:algo}), -puis comment intégrer la contrainte de distribution uniforme -de la sortie -dans le choix de la fonction à itérer (section~\ref{sub:prng:unif}). -L'approche est évaluée dans la dernière section. -\JFC{plan à revoir} - - \section{ Nombres pseudo aléatoires construits par itérations unaires}\label{sub:prng:algo} @@ -304,7 +296,7 @@ ait une distribution suffisamment proche de la distribution uniforme. On énonce directement le théorème suivant dont la preuve est donnée en annexes~\ref{anx:generateur}. -\begin{theorem}\label{thm:prng:u} +\begin{restatable}[Uniformité de la sortie de l'algorithme~\ref{CI Algorithm}]{theorem}{PrngCIUniforme}\label{thm:prng:u} Soit $f: \Bool^{n} \rightarrow \Bool^{n}$, $\textsc{giu}(f)$ son graphe d'itérations , $\check{M}$ sa matrice d'adjacence et $M$ une matrice $2^n\times 2^n$ @@ -315,7 +307,7 @@ On énonce directement le théorème suivant dont la preuve est donnée en annex l'algorithme~\ref{CI Algorithm} suit une loi qui tend vers la distribution uniforme si et seulement si $M$ est une matrice doublement stochastique. -\end{theorem} +\end{restatable} \subsection{Quelques exemples} @@ -454,7 +446,7 @@ Montrer que les sous-séquences de suites chaotiques ainsi générées demeuren est l'objectif de la section suivante. -\section{Un PRNG basé sur des itérations unaires qui est chaotique } +\section{Un PRNG basé sur des itérations unaires qui est chaotique }\label{prng:unaire:chaos} Cette section présente un espace métrique adapté au générateur de nombres pseudo-aléatoires présenté à l'algorithme~\ref{CI Algorithm} et prouve ensuite que la fonction qu'il représente @@ -661,9 +653,11 @@ la séquence. On a la proposition suivante, qui est démontrée en annexes~\ref{anx:generateur}. -\begin{lemma} + + +\begin{restatable}[Une distance dans $\mathcal{X}_{\mathsf{N},\mathcal{P}}$]{theorem}{distancedsxnp} $d$ est une distance sur $\mathcal{X}_{\mathsf{N},\mathcal{P}}$. -\end{lemma} +\end{restatable} \subsection{Le graphe $\textsc{giu}_{\mathcal{P}}(f)$ étendant $\textsc{giu}(f)$} @@ -743,24 +737,33 @@ Le dernier donnerait le comportement d'un générateur qui s'autoriserait Le théorème suivant, similaire à ceux dans $\mathcal{X}_u$ et dans $\mathcal{X}_g$ est prouvé en annexes~\ref{anx:generateur}. -\begin{theorem} +\begin{restatable}[Conditions pour la choticité de $G_{f_u,\mathcal{P}}$]{theorem}{thmchoticitgfp} La fonction $G_{f_u,\mathcal{P}}$ est chaotique sur $(\mathcal{X}_{\mathsf{N},\mathcal{P}},d)$ si et seulement si -graphe d'itération $\textsc{giu}_{\mathcal{P}}(f)$ +le graphe d'itération $\textsc{giu}_{\mathcal{P}}(f)$ est fortement connexe. -\end{theorem} -On alors corollaire suivant - -\begin{corollary} - Le générateur de nombre pseudo aléatoire détaillé - à l'algorithme~\ref{CI Algorithm} - n'est pas chaotique - sur $(\mathcal{X}_{\mathsf{N},\{b\}},d)$ pour la fonction négation. -\end{corollary} -\begin{proof} - Dans cet algorithme, $\mathcal{P}$ est le singleton $\{b\}$. - Que $b$ soit pair ou impair, $\textsc{giu}_{\{b\}}(f)$ - n'est pas fortement connexe. -\end{proof} - +\end{restatable} +% On alors corollaire suivant + +% \begin{corollary} +% Le générateur de nombre pseudo aléatoire détaillé +% à l'algorithme~\ref{CI Algorithm} +% n'est pas chaotique +% sur $(\mathcal{X}_{\mathsf{N},\{b\}},d)$ pour la fonction négation. +% \end{corollary} +% \begin{proof} +% Dans cet algorithme, $\mathcal{P}$ est le singleton $\{b\}$. +% Que $b$ soit pair ou impair, $\textsc{giu}_{\{b\}}(f)$ +% n'est pas fortement connexe. +% \end{proof} + + +\section{Conclusion} +Ce chapitre a proposé un algorithme permettant de construire un +PRNG chaotique à partir d'un PRNG existant. Pour ce faire, il est nécessaire +et suffisant que la fonction $f$ qui est itérée un nombre $b$ de fois +possède un $\textsc{giu}_{\{b\}}(f)$ fortement connexe et que sa matrice de Markov assosiée soit doublement stochastique. +Le chapitre suivant montre comment construire une telle fonction. + +