X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hdrcouchot.git/blobdiff_plain/98c34e4d34d6f63836eefca981f5d1ce73a865e2..2b04820abccb0772b10b2c53542ecddc6a6f600c:/annexePromelaProof.tex diff --git a/annexePromelaProof.tex b/annexePromelaProof.tex index dbc5774..1f70e9f 100644 --- a/annexePromelaProof.tex +++ b/annexePromelaProof.tex @@ -228,11 +228,7 @@ to $F(Xd^{l+1}_{k\,0}, \ldots,Xd^{l+1}_{k\,n-1})$. Thanks to \end{Proof} -\begin{theorem}[Soundness wrt universal convergence property]\label{Theo:sound} - Let $\phi$ be a DDN model and $\psi$ be its translation. If $\psi$ verifies - the LTL property (\ref{eq:ltl:conv}) under weak fairness property, then - iterations of $\phi$ are universally convergent. -\end{theorem} +\promelasound* \begin{Proof} % For the case where the strategy is finite, one notice that property % verification is achieved under weak fairness property. Instructions that @@ -259,12 +255,8 @@ to $F(Xd^{l+1}_{k\,0}, \ldots,Xd^{l+1}_{k\,n-1})$. Thanks to % \end{Corol} +\promelacomplete* -\begin{theorem}[Completeness wrt universal convergence property]\label{Theo:completeness} - Let $\phi$ be a DDN model and $\psi$ be its translation. If $\psi$ does not - verify the LTL property (\ref{eq:ltl:conv}) under weak fairness property then - the iterations of $\phi$ are divergent. -\end{theorem} \begin{Proof} For models $\psi$ that do not verify the LTL property (\ref{eq:ltl:conv}) it is easy to construct corresponding iterations of the DDN, whose strategy is