X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hdrcouchot.git/blobdiff_plain/9e9f22c16917d3bf287f5e1f0df739200c392594..21064a689bad8fe8e8666af593cad468f1a89483:/sdd.tex diff --git a/sdd.tex b/sdd.tex index c41efa9..ad52238 100644 --- a/sdd.tex +++ b/sdd.tex @@ -147,7 +147,7 @@ schémas suivants : jour. La suite $S = \left(s^t\right)^{t \in \mathds{N}}$ est une séquence de sous-ensembles de $[{\mathsf{N}}]$ appelée \emph{stratégie généralisée}. - Il est basé sur la relation définie pour tout $i \in [{\mathsf{N}}]$ par + Ce schéma est basé sur la relation définie pour tout $i \in [{\mathsf{N}}]$ par \begin{equation} x^{t+1}_i= \left\{ \begin{array}{l} @@ -184,7 +184,7 @@ sont les éléments de $\Bool^{\mathsf{N}}$ (voir \textsc{Figure}~\ref{fig:xpl:g est le graphe orienté de $\Bool^{\mathsf{N}}$ qui contient un arc $x \rightarrow y$ si et seulement si $y=f(x)$. \item Le \emph{graphe des itérations unaires} de $f$, noté $\textsc{giu}(f)$ -est le graphe orienté de $\Bool^{\mathsf{N}}$ qui contient un arc $x \rightarrow y$ pour $x \neq$ si +est le graphe orienté de $\Bool^{\mathsf{N}}$ qui contient un arc $x \rightarrow y$ si et seulement s'il existe $i \in \Delta f(x)$ tel que $y = \overline{x}^i$. Si $\Delta f(x)$ est vide, on ajoute l'arc $x \rightarrow x$. @@ -275,7 +275,7 @@ On a la proposition suivante: \begin{theorem}\label{Prop:attracteur} La configuration $x$ est un point fixe si et seulement si -$\{x\}$ est un attracteur du graphe d'itération (synchrone, unaire, généralisé). +$\{x\}$ est un attracteur du graphe d'itérations (synchrone, unaire, généralisé). En d'autres termes, les attracteurs non cycliques de celui-ci sont les points fixes de $f$. Ainsi pour chaque $x\in \Bool^{\mathsf{N}}$, il existe au moins un chemin @@ -316,7 +316,7 @@ ${\mathsf{N}}\times {\mathsf{N}}$. Celle-ci mémorise uniquement l'existence d'une dépendance de tel élément vis à vis de tel élément. -Elle ne mémorise pas \emph{comment} dépendent les éléments +Elle ne mémorise pas \emph{comment} les éléments dépendent les uns par rapport aux autres. Cette matrice est nommée \emph{matrice d'incidence}.