X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hdrcouchot.git/blobdiff_plain/9ed4f504a9b9dd9704b62305d743e177a9ae6f72..44a56c5eb4a1dfdf7dc67735c5c00f478cef2ede:/sdd.tex diff --git a/sdd.tex b/sdd.tex index 530ef34..7a31f0d 100644 --- a/sdd.tex +++ b/sdd.tex @@ -1,17 +1,7 @@ -\JFC{Chapeau chapitre à faire} -% Cette section énonce quelques notions suffisantes -% à la compréhension de ce document. -% Elle commence par formaliser ce que sont les systèmes dynamiques booléens -% (section \ref{sub:sdd}) -% et montre comment en extraire leur graphe d'itérations (section~\ref{sub:grIter}) -% et d'interactions (section~\ref{sub:sdd:inter}). -% Elle se termine en définissant une distance sur l'espace -% $\llbracket 1;n\rrbracket^{\Nats}\times \Bool^n$ (section~\ref{sub:metric}). - @@ -23,32 +13,32 @@ de conjonction \og . \fg{} et unaire de négation \og $\overline{\mathstrut\enskip}$ \fg{}. -Soit $n$ un entier naturel. -On introduit quelques notations à propos d'éléments de $\Bool^n$. -L'ensemble $\{1,\dots, n\}$ sera par la suite noté $[n]$. +Soit ${\mathsf{N}}$ un entier naturel. +On introduit quelques notations à propos d'éléments de $\Bool^{\mathsf{N}}$. +L'ensemble $\{1,\dots, {\mathsf{N}}\}$ sera par la suite noté $[{\mathsf{N}}]$. Le $i^{\textrm{ème}}$ composant d'un élément -$x \in \Bool^n$ s'écrit $x_i$. -Si l'ensemble $I$ est une partie de $[n]$, alors -$\overline{x}^I$ est l'élément $y\in \Bool^n$ +$x \in \Bool^{\mathsf{N}}$ s'écrit $x_i$. +Si l'ensemble $I$ est une partie de $[{\mathsf{N}}]$, alors +$\overline{x}^I$ est l'élément $y\in \Bool^{\mathsf{N}}$ tel que $y_i = 1 - x_i$ si $i\in I$ et $y_i = x_i$ sinon. -On considère les deux abréviations $\overline{x}$ pour $\overline{x}^{[n]}$ +On considère les deux abréviations $\overline{x}$ pour $\overline{x}^{[{\mathsf{N}}]}$ (chaque composant de $\overline{x}$ est nié: c'est une négation composante à composante) -et $\overline{x}^i$ pour $\overline{x}^{\{i\}}$ pour $i \in [n]$ +et $\overline{x}^i$ pour $\overline{x}^{\{i\}}$ pour $i \in [{\mathsf{N}}]$ (seul $x_i$ est nié dans $\overline{x}$). -Pour tout $x$ et $y$ dans $\Bool^n$, l'ensemble -$\Delta(x, y)$, contient les $i \in [n]$ +Pour tout $x$ et $y$ dans $\Bool^{\mathsf{N}}$, l'ensemble +$\Delta(x, y)$, contient les $i \in [{\mathsf{N}}]$ tels que $x_i \neq y_i$. -Soit enfin $f : \Bool^n \rightarrow \Bool^n$. Son $i^{\textrm{ème}}$ composant -est nommé $f_i$ qui est une fonction de $\Bool^n$ dans $\Bool$. +Soit enfin $f : \Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}}$. Son $i^{\textrm{ème}}$ composant +est nommé $f_i$ qui est une fonction de $\Bool^{\mathsf{N}}$ dans $\Bool$. Pour chaque -$x$ dans $\Bool^n$, l'ensemble +$x$ dans $\Bool^{\mathsf{N}}$, l'ensemble $\Delta f(x)$ est défini par $\Delta f(x) = \Delta(x,f(x))$. On peut admettre que $f (x) = \overline{x}^{\Delta f(x)}$ . \begin{xpl}\label{xpl:1} -On considère $n= 3$ et $f:\Bool^3 \rightarrow \Bool^3$ telle que +On considère ${\mathsf{N}}= 3$ et $f:\Bool^3 \rightarrow \Bool^3$ telle que $f(x)=(f_1(x),f_2(x),f_3(x))$ avec $$\begin{array}{rcl} f_1(x_1, x_2, x_3) &=& (\overline{x_1} + \overline{x_2}).x_3 \textrm{, }\\ @@ -105,63 +95,69 @@ Pour $x=(0,1,0)$ les assertions suivantes se déduisent directement du tableau: \end{xpl} \subsection{Réseau booléen} -Soit $n$ un entier naturel représentant le nombre -d'éléments étudiés (gènes, protéines,\ldots). +Soit ${\mathsf{N}}$ un entier naturel représentant le nombre +d'éléments étudiés. Un réseau booléen est défini à partir d'une fonction booléenne: \[ -f:\Bool^n\to\Bool^n,\qquad x=(x_1,\dots,x_n)\mapsto f(x)=(f_1(x),\dots,f_n(x)), +f:\Bool^{\mathsf{N}}\to\Bool^{\mathsf{N}},\qquad x=(x_1,\dots,x_{\mathsf{N}})\mapsto f(x)=(f_1(x),\dots,f_{\mathsf{N}}(x)), \] -et un {\emph{schéma itératif}} ou encore \emph{mode de mise à jour}. À partir d'une configuration initiale $x^0\in\Bool^n$, la suite $(x^{t})^{t +et un {\emph{schéma itératif}} ou encore \emph{mode de mise à jour}. À partir d'une configuration initiale $x^0\in\Bool^{\mathsf{N}}$, la suite $(x^{t})^{t \in \Nats}$ des configurations du système est construite selon l'un des schémas suivants : \begin{itemize} \item \textbf{Schéma parallèle synchrone :} basé sur la relation de récurrence - $x^{t+1}=f(x^t)$. Tous les $x_i$, $1 \le i \le n$, sont ainsi mis à jour à + $x^{t+1}=f(x^t)$. Tous les $x_i$, $1 \le i \le {\mathsf{N}}$, sont ainsi mis à jour à chaque itération en utilisant l'état global précédent du système $x^t$. \item \textbf{Schéma unaire :} ce schéma est parfois qualifié de chaotique dans la littérature. Il consiste à modifier la valeur - d'un unique élément $i$, $1 \le i \le n$, à + d'un unique élément $i$, $1 \le i \le {\mathsf{N}}$, à chaque itération. Le choix de l'élément qui est modifié à chaque itération est défini par une suite $S = \left(s^t\right)^{t \in \mathds{N}}$ qui est une séquence - d'indices dans $[n]$. Cette suite est appelée \emph{stratégie unaire}. - Il est basé sur la relation définie pour tout $i \in [n]$ par - $$ + d'indices dans $[{\mathsf{N}}]$. Cette suite est appelée \emph{stratégie unaire}. + Ce mode est défini pour tout $i \in [{\mathsf{N}}]$ par + +\begin{equation} x^{t+1}_i= \left\{ \begin{array}{l} f_i(x^t) \textrm{ si } i=s^t, \\ x^t_i\textrm{ sinon.} \end{array} - \right.$$ + \right. +\label{eq:schema:unaire} +\end{equation} \item \textbf{Schéma généralisé:} dans ce schéma, ce sont les valeurs - d'un ensemble d'éléments de $[n]$ qui sont modifiées à chaque itération. + d'un ensemble d'éléments de $[{\mathsf{N}}]$ qui sont modifiées à chaque itération. Dans le cas particulier où c'est la valeur d'un singleton - $\{k\}$, $1 \le k \le n$, qui est modifiée à + $\{k\}$, $1 \le k \le {\mathsf{N}}$, qui est modifiée à chaque itération, on retrouve le mode unaire. Dans le second cas particulier où ce sont les valeurs de - tous les éléments de $\{1, \ldots, n\}$ qui sont modifiées + tous les éléments de $\{1, \ldots, {\mathsf{N}}\}$ qui sont modifiées à chaque itération, on retrouve le mode parallèle. Ce mode généralise donc les deux modes précédents. Plus formellement, à la $t^{\textrm{ème}}$ itération, seuls les éléments de la partie - $s^{t} \in \mathcal{P}([n])$ sont mis à + $s^{t} \in \mathcal{P}([{\mathsf{N}}])$ sont mis à jour. La suite $S = \left(s^t\right)^{t \in \mathds{N}}$ est une séquence de sous-ensembles - de $[n]$ appelée \emph{stratégie généralisée}. - Il est basé sur la relation définie pour tout $i \in [n]$ par - $$ + de $[{\mathsf{N}}]$ appelée \emph{stratégie généralisée}. + Ce schéma est basé sur la relation définie pour tout $i \in [{\mathsf{N}}]$ par + \begin{equation} x^{t+1}_i= \left\{ \begin{array}{l} f_i(x^t) \textrm{ si } i \in s^t, \\ x^t_i\textrm{ sinon.} \end{array} - \right.$$ + \right. +\label{eq:schema:generalise} +\end{equation} + @@ -176,22 +172,24 @@ La section suivante détaille comment représenter graphiquement les évolutions -Pour un entier naturel $n$ et une -fonction $f : B^n \rightarrow B^n$, plusieurs évolutions sont possibles +Pour un entier naturel ${\mathsf{N}}$ et une +fonction $f : B^{\mathsf{N}} \rightarrow B^{\mathsf{N}}$, plusieurs évolutions sont possibles en fonction du schéma itératif retenu. Celles-ci sont représentées par un graphe orienté dont les noeuds -sont les éléments de $\Bool^n$ (voir \textsc{Figure}~\ref{fig:xpl:graphs}). +sont les éléments de $\Bool^{\mathsf{N}}$ (voir \textsc{Figure}~\ref{fig:xpl:graphs}). \begin{itemize} \item Le \emph{graphe des itérations synchrones} de $f$, noté $\textsc{gis}(f)$ -est le graphe orienté de $\Bool^n$ qui contient un arc $x \rightarrow y$ si +est le graphe orienté de $\Bool^{\mathsf{N}}$ qui contient un arc $x \rightarrow y$ si et seulement si $y=f(x)$. \item Le \emph{graphe des itérations unaires} de $f$, noté $\textsc{giu}(f)$ -est le graphe orienté de $\Bool^n$ qui contient un arc $x \rightarrow y$ si -et seulement s'il existe $x \in \Delta f(x)$ tel que $y = \overline{x}^i$. +est le graphe orienté de $\Bool^{\mathsf{N}}$ qui contient un arc $x \rightarrow y$ si +et seulement s'il existe $i \in \Delta f(x)$ tel que $y = \overline{x}^i$. +Si $\Delta f(x)$ est vide, on ajoute l'arc $x \rightarrow x$. + \item Le \emph{graphe des itérations généralisées} de $f$, noté $\textsc{gig}(f)$ -est le graphe orienté de $\Bool^n$ qui contient un arc $x \rightarrow y$ si +est le graphe orienté de $\Bool^{\mathsf{N}}$ qui contient un arc $x \rightarrow y$ si et seulement s'il existe un ensemble $I\subseteq \Delta f(x)$ tel que $y = \overline{x}^I$. On peut remarquer que ce graphe contient comme sous-graphe à la fois celui des itérations synchrones et celui @@ -202,17 +200,11 @@ des itérations unaires. -\begin{xpl} -On reprend notre exemple illustratif -détaillé à la page~\pageref{xpl:1} avec sa table -d'images (\textsc{Table}~\ref{table:xpl:images}). -La \textsc{Figure}~\ref{fig:xpl:graphs} donne les trois graphes d'itérations -associés à $f$. \begin{figure}[ht] \begin{center} \subfigure[$\textsc{gis}(f)$]{ - \begin{minipage}{0.33\textwidth} + \begin{minipage}{0.3\textwidth} \begin{center} \includegraphics[scale=0.4]{fsig} \end{center} @@ -220,7 +212,7 @@ associés à $f$. \label{fig:fsig} } \subfigure[$\textsc{giu}(f)$]{ - \begin{minipage}{0.33\textwidth} + \begin{minipage}{0.3\textwidth} \begin{center} \includegraphics[scale=0.4]{faig} \end{center} @@ -228,7 +220,7 @@ associés à $f$. \label{fig:faig} } \subfigure[$\textsc{gig}(f)$]{ - \begin{minipage}{0.33\textwidth} + \begin{minipage}{0.3\textwidth} \begin{center} \includegraphics[scale=0.4]{fgig} \end{center} @@ -245,13 +237,20 @@ x_1 + x_2 + x_3)$.\label{fig:xpl:graphs} On remarque le cycle $((101,111),(111,011),(011,101))$ à la \textsc{Figure}~(\ref{fig:fsig}).} \end{figure} + +\begin{xpl} +On reprend notre exemple illustratif +détaillé à la page~\pageref{xpl:1} avec sa table +d'images (\textsc{Table}~\ref{table:xpl:images}). +La \textsc{Figure}~\ref{fig:xpl:graphs} donne les trois graphes d'itérations +associés à $f$. \end{xpl} \subsection{Attracteurs} On dit que le point -$x \in \Bool^n$ est un \emph{point fixe} de $f$ si $x = f (x)$. +$x \in \Bool^{\mathsf{N}}$ est un \emph{point fixe} de $f$ si $x = f (x)$. Les points fixes sont particulièrement intéressants car ils correspondent aux états stables: dans chaque graphe d'itérations, le point $x$ est un point fixe @@ -259,12 +258,12 @@ si et seulement si il est son seul successeur. -Soit $\Gamma$ un graphe d'itérations (synchrones, unaires ou généralisées) +Soit un graphe d'itérations (synchrones, unaires ou généralisées) de $f$. -Les \emph{attracteurs} de $\Gamma$ sont les +Les \emph{attracteurs} de ce graphe sont les plus petits sous-ensembles (au sens de l'inclusion) non vides -$A \subseteq \Bool^n$ tels que pour tout arc -$x \rightarrow y$ de $\Gamma$, si $x$ est un élément de $A$, alors +$A \subseteq \Bool^{\mathsf{N}}$ tels que pour tout arc +$x \rightarrow y$, si $x$ est un élément de $A$, alors $y$ aussi. Un attracteur qui contient au moins deux éléments est dit \emph{cyclique}. On en déduit qu'un attracteur cyclique ne contient pas de point fixe. @@ -276,13 +275,13 @@ On a la proposition suivante: \begin{theorem}\label{Prop:attracteur} -Le point $x$ est un point fixe si et seulement si -$\{x\}$ est un attracteur de $\Gamma$. -En d'autres termes, les attracteurs non cycliques de $\Gamma$ +La configuration $x$ est un point fixe si et seulement si +$\{x\}$ est un attracteur du graphe d'itérations (synchrone, unaire, généralisé). +En d'autres termes, les attracteurs non cycliques de celui-ci sont les points fixes de $f$. -Ainsi pour chaque $x\in \Bool^n$, il existe au moins un chemin +Ainsi pour chaque $x\in \Bool^{\mathsf{N}}$, il existe au moins un chemin depuis $x$ qui atteint un attracteur. -Ainsi $\Gamma$ contient toujours au moins un attracteur. +Tout graphe d'itérations contient donc toujours au moins un attracteur. \end{theorem} @@ -300,7 +299,7 @@ Les interactions entre les composants du système peuvent être mémorisées dans la {\emph{matrice jacobienne discrète}} $f'$. Celle-ci est définie comme étant la fonction qui à chaque -configuration $x\in\Bool^n$ associe la matrice de taille +configuration $x\in\Bool^{\mathsf{N}}$ associe la matrice de taille $n\times n$ telle que \begin{equation} f'(x)=(f'_{ij}(x)),\qquad @@ -314,17 +313,17 @@ $\overline{x}^j_j$ et $x_j$ sont considérés comme des entiers naturels dans $\Z$. Lorsqu'on supprime les signes dans la matrice jacobienne discrète, on obtient une matrice notée $B(f)$ aussi de taille -$n\times n$. +${\mathsf{N}}\times {\mathsf{N}}$. Celle-ci mémorise uniquement l'existence d'une dépendance de tel élément vis à vis de tel élément. -Elle ne mémorise pas \emph{comment} dépendent les éléments +Elle ne mémorise pas \emph{comment} les éléments dépendent les uns par rapport aux autres. Cette matrice est nommée \emph{matrice d'incidence}. \begin{theorem} -Si $f_i$ ne dépend pas de $x_j$, alors pour tout $x\in [n]$, -$f_i(\overline{x}^j)$ est égal à $f_i(x)$, \textit{i.e}, +Si $f_i$ ne dépend pas de $x_j$, alors pour tout $x\in [{\mathsf{N}}]$, +$f_i(\overline{x}^j)$ est égal à $f_i(x)$, \textit{i.e.}, $f'_{ij}(x)=0$. Ainsi $B(f)_{ij}$ est nulle. La réciproque est aussi vraie. \end{theorem} @@ -334,9 +333,9 @@ $f'_{ij}(x)=0$. Ainsi $B(f)_{ij}$ est nulle. La réciproque est aussi vraie. En outre, les interactions peuvent se représenter à l'aide d'un graphe $\Gamma(f)$ orienté et signé défini ainsi: l'ensemble des sommets est -$[n]$ et il existe un arc de $j$ à $i$ de signe +$[{\mathsf{N}}]$ et il existe un arc de $j$ à $i$ de signe $s\in\{-1,1\}$, noté $(j,s,i)$, si $f_{ij}(x)=s$ pour au moins -un $x\in\Bool^n$. +un $x\in\Bool^{\mathsf{N}}$. On note que la présence de deux arcs de signes opposés entre deux sommets donnés @@ -417,7 +416,8 @@ La \textsc{Figure}~(\ref{fig:f:incidence}) donne la matrice d'incidence complèt \begin{figure}[ht] \begin{center} \subfigure[Matrice jacobienne]{ - \begin{minipage}{0.90\textwidth} + \begin{minipage}{0.65\textwidth} + \begin{scriptsize} \begin{center} $ \left( @@ -453,21 +453,12 @@ La \textsc{Figure}~(\ref{fig:f:incidence}) donne la matrice d'incidence complèt \right) $ \end{center} - \end{minipage} + \end{scriptsize} + \end{minipage} \label{fig:f:jacobienne} } - ~ - \subfigure[Graphe d'interaction]{ - \begin{minipage}{0.45\textwidth} - \begin{center} - \includegraphics[scale=0.5]{gf} - \end{center} - \label{fig:f:interaction} - \end{minipage} - } - - \subfigure[Matrice d'incidence]{ - \begin{minipage}{0.45\textwidth} + \subfigure[Matrice d'incidence]{ + \begin{minipage}{0.25\textwidth} \begin{center} $ B(f) = @@ -483,6 +474,16 @@ La \textsc{Figure}~(\ref{fig:f:incidence}) donne la matrice d'incidence complèt \label{fig:f:incidence} \end{minipage} } + + ~ + \subfigure[Graphe d'interaction]{ + \begin{minipage}{0.45\textwidth} + \begin{center} + \includegraphics[scale=0.5]{gf} + \end{center} + \label{fig:f:interaction} + \end{minipage} + } \end{center} \caption{Représentations des dépendances entre les éléments de la fonction @@ -515,49 +516,48 @@ arc positif (resp. un arc négatif) de $i$ vers lui-même. \subsection{Conditions de convergence}\label{sec:Robert:async} Parmi les itérations unaires caractérisées par leurs stratégies -$S=(s^t)^{t \in \Nats}$ d'éléments appartenant à $[n]$, +$S=(s^t)^{t \in \Nats}$ d'éléments appartenant à $[{\mathsf{N}}]$, sont jugées intéressantes celles qui activent au moins une fois -chacun des $i\in[n]$. Dans le cas contraire, un élément n'est jamais modifié. +chacun des $i\in[{\mathsf{N}}]$. Dans le cas contraire, un élément n'est jamais modifié. Plus formellement, une séquence finie $S=(s^t)^{t \in \Nats}$ -est dite \emph{complète} relativement à $[n]$ si -tout indice de $[n]$ +est dite \emph{complète} relativement à $[{\mathsf{N}}]$ si +tout indice de $[{\mathsf{N}}]$ s'y retrouve au moins une fois. Parmi toutes les stratégies unaires de -$[n]^{\Nats}$, on qualifie de: +$[{\mathsf{N}}]^{\Nats}$, on qualifie de: \begin{itemize} \item \emph{périodiques} celles -qui sont constituées par une répétition indéfinie -d'une même séquence $S$ complète relativement à $[n]$. +qui sont constituées par une répétition infinie +d'une même séquence $S$ complète relativement à $[{\mathsf{N}}]$. En particulier toute séquence périodique est complète. \item \emph{pseudo-périodiques} celles -qui sont constituées par une succession indéfinie de séquences +qui sont constituées par une succession infinie de séquences (de longueur éventuellement variable non supposée bornée) complètes. Autrement dit dans chaque stratégie pseudo-périodique, chaque indice de -$1$ à $n$ revient indéfiniment. +$1$ à ${\mathsf{N}}$ revient infiniment. \end{itemize} -François Robert~\cite{Rob95} -a énoncé en 1995 le théorème suivant de convergence +On a le théorème suivant de convergence dans le mode des itérations unaires. -\begin{theorem}\label{Th:conv:GIU} +\begin{theorem}[~\cite{Rob95}]\label{Th:conv:GIU} Si le graphe $\Gamma(f)$ n'a pas de cycle et si la stratégie unaire est pseudo-périodique, alors tout chemin de $\textsc{giu}(f)$ atteint -l'unique point fixe $\zeta$ en au plus $n$ pseudo-périodes. +l'unique point fixe $\zeta$ en au plus ${\mathsf{N}}$ pseudo-périodes. \end{theorem} Le qualificatif \emph{pseudo-périodique} peut aisément s'étendre aux stratégies généralisées comme suit. Lorsqu'une stratégie généralisée est constituée d'une -succession indéfinie de séquences de parties de $[n]$ -dont l'union est $[n]$, cette stratégie est {pseudo-périodique}. -J. Bahi~\cite{Bah00} a démontré le théorème suivant: +succession infinie de séquences de parties de $[{\mathsf{N}}]$ +dont l'union est $[{\mathsf{N}}]$, cette stratégie est {pseudo-périodique}. +On a le théorème suivant. -\begin{theorem}\label{Th:Bahi} +\begin{theorem}[~\cite{Bah00}]\label{Th:Bahi} Si le graphe $\Gamma(f)$ n'a pas de cycle et si la stratégie généralisée est pseudo-périodique alors tout chemin de $\textsc{gig}(f)$ (et donc de $\textsc{giu}(f)$)