X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hdrcouchot.git/blobdiff_plain/a2a0b954d14428833201eec6ac72b670ace32d4a..0d1c31c9837325e2dad26554c2cde3a457455158:/main.tex?ds=inline diff --git a/main.tex b/main.tex index 5b0ab67..9164d38 100644 --- a/main.tex +++ b/main.tex @@ -13,11 +13,17 @@ \usepackage{dsfont} \usepackage{graphicx} \usepackage{listings} +\usepackage{tikz} +\usepackage{pgfplots} +\usepgfplotslibrary{groupplots} + %\usepackage[font=footnotesize]{subfig} \usepackage[utf8]{inputenc} \usepackage{thmtools, thm-restate} \usepackage{multirow} \usepackage{algorithm2e} +\usepackage{mathtools} + %\declaretheorem{theorem} %%-------------------- @@ -30,7 +36,7 @@ %%-------------------- %% Title of the document -\declarehdr{Title}{XX Mois XXXX} +\declarehdr{Modèles discrets pour la sécurité: des méthodes itératives à l'analyse vectorielle}{XX Mois XXXX} %%-------------------- %% Set the author of the HDR @@ -131,13 +137,27 @@ \def \P {\mathbb{P}} \def \ov {\overline} \def \ts {\tau_{\rm stop}} - +\def\rl{{^{.}}} + +\DeclarePairedDelimiter\abs{\lvert}{\rvert}% +\DeclarePairedDelimiter\norm{\lVert}{\rVert}% + +% Swap the definition of \abs* and \norm*, so that \abs +% and \norm resizes the size of the brackets, and the +% starred version does not. +\makeatletter +\let\oldabs\abs +\def\abs{\@ifstar{\oldabs}{\oldabs*}} +% +\let\oldnorm\norm +\def\norm{\@ifstar{\oldnorm}{\oldnorm*}} +\makeatother \newtheorem{theorem}{Théorème} \newtheorem{lemma}{Lemme} \newtheorem{corollary}{Corollaire} \newtheorem*{xpl}{Exemple} -\newtheorem*{Proof}{Preuve} + \newtheorem{Def}{Définition} \begin{document} @@ -148,26 +168,35 @@ \chapter*{Introduction} -Blabla blabla. +\input{intro} \mainmatter -\part{Réseaux Discrets} +\part{Réseaux discrets} + +\chapter{Iterations discrètes de réseaux booléens}\label{chap:sdd} + +Ce chapitre formalise tout d'abord ce qu'est +un réseau booléen (section~\ref{sec:sdd:formalisation}. On y revoit +les différents modes opératoires, leur représentation à l'aide de +graphes et les résultats connus de convergence). +Ce chapitre montre ensuite à la section~\ref{sec:sdd:mixage} +comment combiner ces modes pour converger aussi +souvent, mais plus rapidement vers un point fixe. Les deux +dernières sections ont fait l'objet du rapport~\cite{BCVC10:ir}. -\chapter{Iterations discrètes de réseaux booléens} -\JFC{chapeau à refaire} -\section{Formalisation} +\section{Formalisation}\label{sec:sdd:formalisation} \input{sdd} -\section{Combinaisons synchrones et asynchrones} +\section{Combinaisons synchrones et asynchrones}\label{sec:sdd:mixage} \input{mixage} \section{Conclusion} -\JFC{Conclusion à refaire} Introduire de l'asynchronisme peut permettre de réduire le temps d'exécution global, mais peut aussi introduire de la divergence. -Dans ce chapitre, nous avons exposé comment construire un mode combinant les +Dans ce chapitre, après avoir introduit les bases sur les réseaux bouléens, +nous avons exposé comment construire un mode combinant les avantage du synchronisme en terme de convergence avec les avantages de l'asynchronisme en terme de vitesse de convergence. @@ -189,12 +218,19 @@ au chaos} discrets chaotiques]{Caracterisation des systèmes discrets chaotiques pour les schémas unaires et généralisés}\label{chap:carachaos} -La première section rappelle ce que sont les systèmes dynamiques chaotiques. -Dire que cette caractérisation dépend du type de stratégie : unaire (TIPE), -généralisée (TSI). Pour chacune d'elle, -on introduit une distance différente. - -On montre qu'on a des résultats similaires. +La suite de ce document se focalise sur des systèmes dynamiques discrets qui ne +convergent pas. Parmi ceux-ci se trouvent ceux qui sont \og chaotiques\fg{}. +La première section de ce chapitre rappelle ce que sont les systèmes +dynamiques chaotiques et leur caractéristiques. +La section~\ref{sec:TIPE12}, qui est une reformulation de~\cite{guyeux10}, +se focalise sur le schéma unaire. Elle est rappelée pour avoir un document se +suffisant à lui-même. +La section~\ref{sec:chaos:TSI} étend ceci au mode généralisé. Pour chacun de ces modes, +une métrique est définie. Finalement, la section~\ref{sec:11FCT} +exhibe des conditions suffisantes premettant d'engendrer +des fonctions chaotiques seon le mode unaire. +Les sections~\ref{sec:TIPE12} et~\ref{sec:11FCT} ont été publiées +dans~\cite{bcg11:ij,bcgr11:ip}. \section{Systèmes dynamiques chaotiques selon Devaney} \label{subsec:Devaney} @@ -203,14 +239,24 @@ On montre qu'on a des résultats similaires. \section{Schéma unaire}\label{sec:TIPE12} \input{12TIPE} -\section{Schéma généralisé} +\section{Schéma généralisé}\label{sec:chaos:TSI} \input{15TSI} \section{Générer des fonctions chaotiques}\label{sec:11FCT} \input{11FCT} -\chapter{Prédiction des systèmes chaotiques} +\section{Conclusion} +Ce chapitre a montré que les itérations unaires sont chaotiques si +et seulement si le graphe $\textsc{giu}(f)$ est fortement connexe et +que les itérations généralisées sont chaotiques si +et seulement si le graphe $\textsc{gig}(f)$ est aussi fortement connexe. +On dispose ainsi à priori d'une collection infinie de fonctions chaotiques. +Le chapitre suivant s'intéresse à essayer de prédire le comportement +de telles fonctions. + + +\chapter{Prédiction des systèmes chaotiques}\label{chp:ANN} \input{chaosANN} @@ -218,82 +264,46 @@ On montre qu'on a des résultats similaires. \part{Applications à la génération de nombres pseudo aléatoires} -\chapter{Caractérisation des générateurs chaotiques} +\chapter{Caractérisation des générateurs chaotiques}\label{chap:PRNG:chao} \input{15RairoGen} -\chapter{Les générateurs issus des codes de Gray} +\chapter{Les générateurs issus des codes de Gray}\label{chap:PRNG:gray} \input{14Secrypt} -%\chapter{Quelques expérimentations} - \part{Application au marquage de média} -\chapter{Un embarquement respectueux du chaos} -% OXFORD +\chapter{Des embarquements préservant le chaos}\label{chap:watermarking} \input{oxford} -\chapter{Des démarches plus classiques} +\chapter{Une démarche de marquage de PDF}\label{chap:watermarking:pdf} +\input{ahmad} -\section{QIM} +\chapter{Une démarches plus classique de dissimulation: STABYLO}\label{chap:stabylo} + \input{stabylo} -\section{Edge Based} +\chapter{Schéma de stéganographie: les dérivées du second ordre}\label{chap:th:yousra} + \input{stegoyousra} \part{Conclusion et Perspectives} +\input{conclusion} -\JFC{Perspectives pour SDD->Promela} -Among drawbacks of the method, one can argue that bounded delays is only -realistic in practice for close systems. -However, in real large scale distributed systems where bandwidth is weak, -this restriction is too strong. In that case, one should only consider that -matrix $s^{t}$ follows the iterations of the system, \textit{i.e.}, -for all $i$, $j$, $1 \le i \le j \le n$, we have$ -\lim\limits_{t \to \infty} s_{ij}^t = + \infty$. -One challenge of this work should consist in weakening this constraint. -We plan as future work to take into account other automatic approaches -to discharge proofs notably by deductive analysis~\cite{CGK05}. - -\JFC{Perspective ANN} - -In future work we intend to enlarge the comparison between the -learning of truly chaotic and non-chaotic behaviors. Other -computational intelligence tools such as support vector machines will -be investigated too, to discover which tools are the most relevant -when facing a truly chaotic phenomenon. A comparison between learning -rate success and prediction quality will be realized. Concrete -consequences in biology, physics, and computer science security fields -will then be stated. -Ajouter lefait que le codede gray n'est pas optimal. -On pourrait aussi travailler à établir un classement qui préserverait -le fait que deux configurations voisines seraient représentées -par deux entiers voisins. Par optimisation? - -\JFC{Perspectives pour les générateurs} : marcher ou sauter... comment on -pourrait étendre, ce que l'on a déjà, ce qu'il reste à faire. - - -\JFC{prespectives watermarking : réécrire l'algo nicolas dans le formalisme -du chapitre 8} -% TSI 2015 -% \chapter{Conclusion} - -% Blabla blabla. \appendix -\chapter{Preuves sur les SDD} +\chapter{Preuves sur les réseaux discrets} \section{Convergence du mode mixe}\label{anx:mix} \input{annexePreuveMixage} @@ -308,13 +318,12 @@ du chapitre 8} \chapter{Preuves sur les systèmes chaotiques} -\section{Continuité de $G_f$ dans $(\mathcal{X}_u,d)$}\label{anx:cont} -\input{annexecontinuite.tex} - +%\section{Continuité de $G_f$ dans $(\mathcal{X}_u,d)$}\label{anx:cont} +%\input{annexecontinuite.tex} -\section{Caractérisation des fonctions $f$ rendant chaotique $G_{f_u}$ dans $(\mathcal{X}_u,d)$}\label{anx:chaos:unaire} -\input{caracunaire.tex} +%\section{Caractérisation des fonctions $f$ rendant chaotique $G_{f_u}$ dans $(\mathcal{X}_u,d)$}\label{anx:chaos:unaire} +%\input{caracunaire.tex} \section{Preuve que $d$ est une distance sur $\mathcal{X}_g$}\label{anx:distance:generalise} \input{preuveDistanceGeneralisee} @@ -324,12 +333,17 @@ du chapitre 8} \input{caracgeneralise.tex} -\section{Théorème~\ref{th:Adrien}}\label{anx:sccg} +\section{Conditions suffisantes pour un $\textsc{giu}(f)$ fortement connexe \label{anx:sccg}} \input{annexesccg} \chapter{Preuves sur les générateurs de nombres pseudo-aléatoires}\label{anx:generateur} \input{annexePreuveDistribution} + +\section{Codes de Gray équilibrés par induction} +\input{annexePreuveGrayEquilibre} + +\section{Majoration du temps de mixage} \input{annexePreuveStopping} \chapter{Preuves sur le marquage de média}\label{anx:marquage} @@ -341,13 +355,18 @@ du chapitre 8} \section{Le marquage est correct et complet}\label{anx:preuve:marquage:correctioncompletue} \input{annexePreuveMarquageCorrectioncompletude} -\backmatter + +% \section{Complexités d'algorithmes de stéganographie} +% \label{anx:preuve:cplxt} +% \input{annexePreuvesComplexiteStego} + + \bibliographystyle{apalike} \bibliography{abbrev,biblioand} \listoffigures \listoftables -\listofdefinitions + \end{document}