X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hdrcouchot.git/blobdiff_plain/a8bd04acf5ce24f5fe4686f33781d6127c7f1f49..d69000ebda300fc836232f34cebb88ddfce4ac98:/main.tex?ds=sidebyside diff --git a/main.tex b/main.tex index da87f22..628e4f9 100644 --- a/main.tex +++ b/main.tex @@ -172,7 +172,7 @@ Blabla blabla. \mainmatter -\part{Réseaux Discrets} +\part{Réseaux discrets} \chapter{Iterations discrètes de réseaux booléens} @@ -182,8 +182,8 @@ les différents modes opératoires, leur représentation à l'aide de graphes et les résultats connus de convergence). Ce chapitre montre ensuite à la section~\ref{sec:sdd:mixage} comment combiner ces modes pour converger aussi -souvent sans, mais plus rapidement. Cette dernière section -a fait l'objet du rapport~\cite{BCVC10:ir}. +souvent, mais plus rapidement vers un point fixe. Les deux +dernières sections ont fait l'objet du rapport~\cite{BCVC10:ir}. \section{Formalisation}\label{sec:sdd:formalisation} \input{sdd} @@ -221,15 +221,16 @@ au chaos} La suite de ce document se focalise sur des systèmes dynamiques discrets qui ne convergent pas. Parmi ceux-ci se trouvent ceux qui sont \og chaotiques\fg{}. La première section de ce chapitre rappelle ce que sont les systèmes -dynamiques chaotiques et leur caractéristiques. Celles-ci dépendent -tout d'abord de la stratégie itérée. La section~\ref{sec:TIPE12} -se focalise sur le schéma unaire tandis que la section~\ref{sec:chaos:TSI} -considère le mode généralisé. Pour chacun de ces modes, -une distance est définie. Finalement, la section~\ref{sec:11FCT} +dynamiques chaotiques et leur caractéristiques. +La section~\ref{sec:TIPE12}, qui est une reformulation de~\cite{guyeux10}, +se focalise sur le schéma unaire. Elle est rappelée pour avoir un document se +suffisant à lui-même. +La section~\ref{sec:chaos:TSI} étend ceci au mode généralisé. Pour chacun de ces modes, +une métrique est définie. Finalement, la section~\ref{sec:11FCT} exhibe des conditions suffisantes premettant d'engendrer des fonctions chaotiques seon le mode unaire. Les sections~\ref{sec:TIPE12} et~\ref{sec:11FCT} ont été publiées -dans~\cite{bcgr11:ip}. +dans~\cite{bcg11:ij,bcgr11:ip}. \section{Systèmes dynamiques chaotiques selon Devaney} \label{subsec:Devaney} @@ -339,7 +340,7 @@ du chapitre 8} \appendix -\chapter{Preuves sur les SDD} +\chapter{Preuves sur les réseaux discrets} \section{Convergence du mode mixe}\label{anx:mix} \input{annexePreuveMixage} @@ -354,13 +355,12 @@ du chapitre 8} \chapter{Preuves sur les systèmes chaotiques} -\section{Continuité de $G_f$ dans $(\mathcal{X}_u,d)$}\label{anx:cont} -\input{annexecontinuite.tex} +%\section{Continuité de $G_f$ dans $(\mathcal{X}_u,d)$}\label{anx:cont} +%\input{annexecontinuite.tex} -\section{Caractérisation des fonctions $f$ rendant chaotique $G_{f_u}$ dans $(\mathcal{X}_u,d)$}\label{anx:chaos:unaire} -\input{caracunaire.tex} - +%\section{Caractérisation des fonctions $f$ rendant chaotique $G_{f_u}$ dans $(\mathcal{X}_u,d)$}\label{anx:chaos:unaire} +%\input{caracunaire.tex} \section{Preuve que $d$ est une distance sur $\mathcal{X}_g$}\label{anx:distance:generalise} \input{preuveDistanceGeneralisee} @@ -370,7 +370,7 @@ du chapitre 8} \input{caracgeneralise.tex} -\section{Théorème~\ref{th:Adrien}}\label{anx:sccg} +\section{Conditions suffisantes pour un $\textsc{giu}(f)$ fortement connexe \label{anx:sccg}} \input{annexesccg}