X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hdrcouchot.git/blobdiff_plain/ab1271f8b9509a86f3434c2389be47fe3a1c4d04..refs/heads/master:/15TSI.tex?ds=inline diff --git a/15TSI.tex b/15TSI.tex index 7f33772..d9886c8 100644 --- a/15TSI.tex +++ b/15TSI.tex @@ -32,7 +32,7 @@ configurations $x^t$ sont définies par la récurrence Soit alors $G_{f_g}$ une fonction de $\Bool^{\mathsf{N}} \times \mathcal{P}(\{1, \ldots, {\mathsf{N}}\})^{\Nats}$ dans lui-même définie par \[ - G_{f_g}(S,x)=(\sigma(S),F_{f_g}(s_0,x)), + G_{f_g}(x,S)=(F_{f_g}(x,s_0),\sigma(S)), \] où la fonction $\sigma$ est définie comme à la section précédente. A nouveau, les itérations généralisées