X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hdrcouchot.git/blobdiff_plain/b3411a22f651c0dbca34dca87df92f8d3d130e1a..b7ce5574dead7f7c53fe6362ac1655d8d54fcd0c:/main.tex diff --git a/main.tex b/main.tex index a31f0bd..fdcf059 100644 --- a/main.tex +++ b/main.tex @@ -16,6 +16,7 @@ %\usepackage[font=footnotesize]{subfig} \usepackage[utf8]{inputenc} \usepackage{thmtools, thm-restate} +\usepackage{multirow} %\declaretheorem{theorem} %%-------------------- @@ -111,7 +112,7 @@ \newcommand{\Bool}[0]{\ensuremath{\mathds{B}}} \newcommand{\rel}[0]{\ensuremath{{\mathcal{R}}}} \newcommand{\Gall}[0]{\ensuremath{\mathcal{G}}} -\newcommand{\Sec}[1]{Sect\,\ref{#1}} +\newcommand{\Sec}[1]{Section\,\ref{#1}} \newcommand{\Fig}[1]{{\sc Figure}~\ref{#1}} \newcommand{\Alg}[1]{Algorithme~\ref{#1}} \newcommand{\Tab}[1]{Tableau~\ref{#1}} @@ -139,18 +140,19 @@ Blabla blabla. \mainmatter -\part{Système Booléens} +\part{Réseaux Discrets} -\chapter{Iterations discrètes de Systèmes Dynamiques booléens} +\chapter{Iterations discrètes de réseaux booléens} +\JFC{chapeau à refaire} \section{Formalisation} \input{sdd} - \section{Combinaisons synchrones et asynchrones} \input{mixage} - \section{Conclusion} +\JFC{Conclusion à refaire} + Introduire de l'asynchronisme peut permettre de réduire le temps d'exécution global, mais peut aussi introduire de la divergence. Dans ce chapitre, nous avons exposé comment construire un mode combinant les @@ -160,7 +162,7 @@ de l'asynchronisme en terme de vitesse de convergence. -\chapter[Preuve de convergence de systèmes booléens]{Preuve automatique de convergence de systèmes booléens}\label{chap:promela} +\chapter{Preuve automatique de convergence}\label{chap:promela} \input{modelchecking} @@ -171,8 +173,9 @@ de l'asynchronisme en terme de vitesse de convergence. \part{Des systèmes dynamiques discrets au chaos} -\chapter{Characterisation des systèmes - discrets chaotiques} +\chapter[Caracterisation des systèmes + discrets chaotiques]{Caracterisation des systèmes + discrets chaotiques pour les schémas unaires et généralisés} La première section rappelle ce que sont les systèmes dynamiques chaotiques. Dire que cette caractérisation dépend du type de stratégie : unaire (TIPE), @@ -185,18 +188,22 @@ On montre qu'on a des résultats similaires. \label{subsec:Devaney} \input{devaney} -\section{Schéma unaire} +\section{Schéma unaire}\label{sec:TIPE12} \input{12TIPE} \section{Schéma généralisé} \input{15TSI} -générer des fonctions vérifiant ceci (TIPE12 juste sur le résultat d'adrien). +\section{Générer des fonctions chaotiques} +\input{11FCT} + \chapter{Prédiction des systèmes chaotiques} -13 JournalMichel +\input{chaosANN} + + @@ -205,8 +212,20 @@ générer des fonctions vérifiant ceci (TIPE12 juste sur le résultat d'adrien) +\part{Conclusion et Perspectives} + +\JFC{Perspectives pour SDD->Promela} +Among drawbacks of the method, one can argue that bounded delays is only +realistic in practice for close systems. +However, in real large scale distributed systems where bandwidth is weak, +this restriction is too strong. In that case, one should only consider that +matrix $s^{t}$ follows the iterations of the system, \textit{i.e.}, +for all $i$, $j$, $1 \le i \le j \le n$, we have$ +\lim\limits_{t \to \infty} s_{ij}^t = + \infty$. +One challenge of this work should consist in weakening this constraint. +We plan as future work to take into account other automatic approaches +to discharge proofs notably by deductive analysis~\cite{CGK05}. -% \part{Conclusion et Perspectives} % \chapter{Conclusion} @@ -230,26 +249,22 @@ générer des fonctions vérifiant ceci (TIPE12 juste sur le résultat d'adrien) \chapter{Preuves sur les systèmes chaotiques} -\section{Continuité de $G_f$ dans $(\mathcal{X},d)$}\label{anx:cont} +\section{Continuité de $G_f$ dans $(\mathcal{X}_u,d)$}\label{anx:cont} \input{annexecontinuite.tex} - - -\section{Caractérisation des fonctions $f$ rendant chaotique $G_f$ dans $(\mathcal{X},d)$}\label{anx:chaos:unaire} +\section{Caractérisation des fonctions $f$ rendant chaotique $G_{f_u}$ dans $(\mathcal{X}_u,d)$}\label{anx:chaos:unaire} \input{caracunaire.tex} -\section{Preuve que $d$ est une distance sur $\mathcal{X}$}\label{anx:distance:generalise} +\section{Preuve que $d$ est une distance sur $\mathcal{X}_g$}\label{anx:distance:generalise} \input{preuveDistanceGeneralisee} -\section{Caractérisation des fonctions $f$ rendant chaotique $G_f$ dans $(\mathcal{X},d)$}\label{anx:chaos:generalise} +\section{Caractérisation des fonctions $f$ rendant chaotique $G_{f_g}$ dans $(\mathcal{X}_g,d)$}\label{anx:chaos:generalise} \input{caracgeneralise.tex} - - \section{Théorème~\ref{th:Adrien}}\label{anx:sccg} \input{annexesccg}