X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hdrcouchot.git/blobdiff_plain/b7fbe4c19ee32e73474091bd99290a9af2167370..4e673fe23eacd3db39c4bc51610f1650c372b13c:/main.tex?ds=sidebyside diff --git a/main.tex b/main.tex index 0893d3b..6887cec 100644 --- a/main.tex +++ b/main.tex @@ -177,18 +177,29 @@ de l'asynchronisme en terme de vitesse de convergence. au chaos} \chapter{Characterisation des systèmes - discrets chaotiques} + discrets chaotiques pour les schémas unaires et généralisés} + +La première section rappelle ce que sont les systèmes dynamiques chaotiques. Dire que cette caractérisation dépend du type de stratégie : unaire (TIPE), généralisée (TSI). Pour chacune d'elle, on introduit une distance différente. On montre qu'on a des résultats similaires. +\section{Systèmes dynamiques chaotiques selon Devaney} +\label{subsec:Devaney} +\input{devaney} + +\section{Schéma unaire} \input{12TIPE} +\section{Schéma généralisé} +\input{15TSI} -générer des fonctions vérifiant ceci (TIPE12 juste sur le résultat d'adrien). +\section{Générer des fonctions chaotiques} +\input{11FCT} + \chapter{Prédiction des systèmes chaotiques} @@ -240,17 +251,20 @@ to discharge proofs notably by deductive analysis~\cite{CGK05}. \chapter{Preuves sur les systèmes chaotiques} -\section{Continuité de $G_f$ dans $(\mathcal{X},d)$}\label{anx:cont} +\section{Continuité de $G_f$ dans $(\mathcal{X}_u,d)$}\label{anx:cont} \input{annexecontinuite.tex} -\section{Caractérisation des fonctions $f$ rendant chaotique $G_f$ dans $(\mathcal{X},d)$}\label{anx:chaos:unaire} +\section{Caractérisation des fonctions $f$ rendant chaotique $G_{f_u}$ dans $(\mathcal{X}_u,d)$}\label{anx:chaos:unaire} \input{caracunaire.tex} +\section{Preuve que $d$ est une distance sur $\mathcal{X}_g$}\label{anx:distance:generalise} +\input{preuveDistanceGeneralisee} - +\section{Caractérisation des fonctions $f$ rendant chaotique $G_{f_g}$ dans $(\mathcal{X}_g,d)$}\label{anx:chaos:generalise} +\input{caracgeneralise.tex} \section{Théorème~\ref{th:Adrien}}\label{anx:sccg}