X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hdrcouchot.git/blobdiff_plain/c30b91ee116985e1082ece543aaf0f6b4c71247b..1042ddb8d08dc129da9358b73e723fc5014fb2c8:/15RairoGen.tex diff --git a/15RairoGen.tex b/15RairoGen.tex index d71c0d3..010beb9 100644 --- a/15RairoGen.tex +++ b/15RairoGen.tex @@ -332,15 +332,21 @@ ce vecteur au vecteur $\pi=(\frac{1}{2^n},\ldots,\frac{1}{2^n})$ -- autrement dit, où la déviation par rapport à la distribution uniforme -- est inférieure à $10^{-4}$. En prenant le max pour tous les $e_i$, on obtient une valeur pour - $b$. Ainsi, on a -$$ + $b$. +Ainsi, on a +\begin{equation} b = \max\limits_{i \in \llbracket 1, 2^n \rrbracket} \{ \min \{ t \mid t \in \Nats, \vectornorm{e_i M_f^t - \pi} < 10^{-4} \} \}. -$$ +\label{eq:mt:ex} +\end{equation} + +\noindent Par la suite, ce nombre sera appelé \emph{temps de mélange}. + + \begin{figure}%[h] \begin{center} @@ -694,7 +700,7 @@ Il n'est pas difficile de constater que $\textsc{giu}_{\{1\}}(f)$ est $\textsc{g \end{center} \caption{Graphes d'iterations $\textsc{giu}_{\mathcal{P}}(h)$ pour $h(x_1,x_2)=(\overline{x_1},x_1\overline{x_2}+\overline{x_1}x_2)$} - \label{fig:xplgraphIter} + %\label{fig:xplgraphIter} \end{figure}