X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hdrcouchot.git/blobdiff_plain/dd837d463f86ebb399eb1cac274139e98815fdd1..73637978d1eddcf2e4938ff290939b708d05e185:/main.tex?ds=sidebyside diff --git a/main.tex b/main.tex index fdcf059..cacbb94 100644 --- a/main.tex +++ b/main.tex @@ -13,10 +13,15 @@ \usepackage{dsfont} \usepackage{graphicx} \usepackage{listings} +\usepackage{tikz} +\usepackage{pgfplots} +\usepgfplotslibrary{groupplots} + %\usepackage[font=footnotesize]{subfig} \usepackage[utf8]{inputenc} \usepackage{thmtools, thm-restate} \usepackage{multirow} +\usepackage{algorithm2e} %\declaretheorem{theorem} %%-------------------- @@ -33,7 +38,8 @@ %%-------------------- %% Set the author of the HDR -\addauthor[first.name@utbm.fr]{First}{Name} +\addauthor[couchot@femto-st.fr]{Jean-François}{Couchot} + %%-------------------- %% Add a member of the jury @@ -122,8 +128,18 @@ \newcommand{\dom}[0]{\ensuremath{\textit{dom}}} \newcommand{\eqNode}[0]{\ensuremath{{\mathcal{R}}}} + +\newcommand {\tv}[1] {\lVert #1 \rVert_{\rm TV}} +\def \top {1.8} +\def \topt {2.3} +\def \P {\mathbb{P}} +\def \ov {\overline} +\def \ts {\tau_{\rm stop}} + + \newtheorem{theorem}{Théorème} \newtheorem{lemma}{Lemme} +\newtheorem{corollary}{Corollaire} \newtheorem*{xpl}{Exemple} \newtheorem*{Proof}{Preuve} \newtheorem{Def}{Définition} @@ -175,7 +191,7 @@ au chaos} \chapter[Caracterisation des systèmes discrets chaotiques]{Caracterisation des systèmes - discrets chaotiques pour les schémas unaires et généralisés} + discrets chaotiques pour les schémas unaires et généralisés}\label{chap:carachaos} La première section rappelle ce que sont les systèmes dynamiques chaotiques. Dire que cette caractérisation dépend du type de stratégie : unaire (TIPE), @@ -195,25 +211,45 @@ On montre qu'on a des résultats similaires. \input{15TSI} -\section{Générer des fonctions chaotiques} +\section{Générer des fonctions chaotiques}\label{sec:11FCT} \input{11FCT} - \chapter{Prédiction des systèmes chaotiques} - \input{chaosANN} +\part{Applications à la génération de nombres pseudo aléatoires} + +\chapter{Caractérisation des générateurs chaotiques} +\input{15RairoGen} + +\chapter{Les générateurs issus des codes de Gray} +\input{14Secrypt} + + + +\part{Application au marquage de média} + +\chapter{Des embarquement préservant le chaos}\label{chap:watermarking} +% OXFORD +\input{oxford} +\chapter{Une démarche de marquage de PDF} +\input{ahmad} +\chapter{Une démarches plus classique de dissimulation: STABYLO} + \input{stabylo} \part{Conclusion et Perspectives} + + + \JFC{Perspectives pour SDD->Promela} Among drawbacks of the method, one can argue that bounded delays is only realistic in practice for close systems. @@ -226,6 +262,31 @@ One challenge of this work should consist in weakening this constraint. We plan as future work to take into account other automatic approaches to discharge proofs notably by deductive analysis~\cite{CGK05}. +\JFC{Perspective ANN} + +In future work we intend to enlarge the comparison between the +learning of truly chaotic and non-chaotic behaviors. Other +computational intelligence tools such as support vector machines will +be investigated too, to discover which tools are the most relevant +when facing a truly chaotic phenomenon. A comparison between learning +rate success and prediction quality will be realized. Concrete +consequences in biology, physics, and computer science security fields +will then be stated. +Ajouter lefait que le codede gray n'est pas optimal. +On pourrait aussi travailler à établir un classement qui préserverait +le fait que deux configurations voisines seraient représentées +par deux entiers voisins. Par optimisation? + +\JFC{Perspectives pour les générateurs} : marcher ou sauter... comment on +pourrait étendre, ce que l'on a déjà, ce qu'il reste à faire. + + +\JFC{prespectives watermarking : réécrire l'algo nicolas dans le formalisme +du chapitre 8} + +% TSI 2015 + + % \chapter{Conclusion} @@ -269,10 +330,27 @@ to discharge proofs notably by deductive analysis~\cite{CGK05}. \input{annexesccg} +\chapter{Preuves sur les générateurs de nombres pseudo-aléatoires}\label{anx:generateur} +\input{annexePreuveDistribution} +\input{annexePreuveStopping} + +\chapter{Preuves sur le marquage de média}\label{anx:marquage} +\section{Le marquage est $\epsilon$-sego-secure} +\input{annexePreuveMarquagedhci} +\section{Le mode $f_l$ est doublement stochastique}\label{anx:marquage:dblesto} +\input{annexePreuveMarquagefldblement} +\section{Le marquage est correct et complet}\label{anx:preuve:marquage:correctioncompletue} +\input{annexePreuveMarquageCorrectioncompletude} \backmatter +\section{Complexité d'Algorithmes de stéganographie} +\label{anx:preuve:cplxt} +\input{annexePreuvesComplexiteStego} + + + \bibliographystyle{apalike} \bibliography{abbrev,biblioand} \listoffigures