X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hdrcouchot.git/blobdiff_plain/e9bdff7e28e4cda1ffb71158afdcf44e3d656b6c..6038581489d722e128563284602e33de354fcf9b:/main.tex?ds=inline diff --git a/main.tex b/main.tex index 16de4a6..a31f0bd 100644 --- a/main.tex +++ b/main.tex @@ -173,14 +173,23 @@ au chaos} \chapter{Characterisation des systèmes discrets chaotiques} + +La première section rappelle ce que sont les systèmes dynamiques chaotiques. Dire que cette caractérisation dépend du type de stratégie : unaire (TIPE), généralisée (TSI). Pour chacune d'elle, on introduit une distance différente. On montre qu'on a des résultats similaires. +\section{Systèmes dynamiques chaotiques selon Devaney} +\label{subsec:Devaney} +\input{devaney} + +\section{Schéma unaire} \input{12TIPE} +\section{Schéma généralisé} +\input{15TSI} générer des fonctions vérifiant ceci (TIPE12 juste sur le résultat d'adrien). @@ -225,11 +234,18 @@ générer des fonctions vérifiant ceci (TIPE12 juste sur le résultat d'adrien) \input{annexecontinuite.tex} + + \section{Caractérisation des fonctions $f$ rendant chaotique $G_f$ dans $(\mathcal{X},d)$}\label{anx:chaos:unaire} \input{caracunaire.tex} +\section{Preuve que $d$ est une distance sur $\mathcal{X}$}\label{anx:distance:generalise} +\input{preuveDistanceGeneralisee} + +\section{Caractérisation des fonctions $f$ rendant chaotique $G_f$ dans $(\mathcal{X},d)$}\label{anx:chaos:generalise} +\input{caracgeneralise.tex}