X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hdrcouchot.git/blobdiff_plain/eb86b87fcb8bd9aa66283fcea4d9efbe964179ff..195f0e218b82119830fb6e31c39b15f723ea62d4:/annexePreuveDistribution.tex?ds=inline diff --git a/annexePreuveDistribution.tex b/annexePreuveDistribution.tex index 7a05f11..878b317 100644 --- a/annexePreuveDistribution.tex +++ b/annexePreuveDistribution.tex @@ -55,3 +55,127 @@ Ces résultats permettent formuler et de prouver le théorème suivant: $M$ est doublement stochastique. \end{Proof} + + +Montrons que +\begin{lemma} +$d$ est une distance sur $\mathcal{X}_{\mathsf{N},\mathcal{P}}$. +\end{lemma} + + +\begin{proof} + $d_{\mathds{B}^\mathsf{N}}$ est la distance de Hamming. + Prouvons que + $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}$ est aussi une distance; +$d$ sera ainsi une distance comme somme de deux distances. + \begin{itemize} +\item De manière évidente, $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s})\geqslant 0$, et si $s=\check{s}$, alors +$d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s})=0$. +Réciproquement si $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s})=0$, alors +$\forall k \in \mathds{N}, v^k=\check{v}^k$ d'après la définition de $d$. +Or les éléments entre les positions $p+1$ et $p+n$ +sont nules et correspondent à $|u^0-\check{u}^0|$, +on peut conclure que $u^0=\check{u}^0$. +On peut étendre ce résultat aux $n \times \max{(\mathcal{P})}$ premiers +bloc engendrant $u^i=\check{u}^i$, $\forall i \leqslant v^0=\check{v}^0$, +et en vérifiant tous les $n \times \max{(\mathcal{P})}$ blocs, $u=\check{u}$. + \item $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}$ est évidemment symétrique +($d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s})=d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(\check{s},s)$). +\item l'inégalité triangulaire est établie puisque la valeur absolue la vérifie +aussi. + \end{itemize} +\end{proof} + + + +\begin{theorem} +La fonction $G_{f_u,\mathcal{P}}$ est chaotique sur + $(\mathcal{X}_{\mathsf{N},\mathcal{P}},d)$ si et seulement si +graphe d'itération $\textsc{giu}_{\mathcal{P}}(f)$ +est fortement connexe. +\end{theorem} + +\begin{proof} +Suppose that $\Gamma_{\mathcal{P}}(f)$ is strongly connected. +Let $x=(e,(u,v)),\check{x}=(\check{e},(\check{u},\check{v})) +\in \mathcal{X}_{\mathsf{N},\mathcal{P}}$ and $\varepsilon >0$. +We will find a point $y$ in the open ball $\mathcal{B}(x,\varepsilon )$ and +$n_0 \in \mathds{N}$ such that $G_f^{n_0}(y)=\check{x}$: this strong transitivity +will imply the transitivity property. +We can suppose that $\varepsilon <1$ without loss of generality. + +Let us denote by $(E,(U,V))$ the elements of $y$. As +$y$ must be in $\mathcal{B}(x,\varepsilon)$ and $\varepsilon < 1$, +$E$ must be equal to $e$. Let $k=\lfloor \log_{10} (\varepsilon) \rfloor +1$. +$d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}((u,v),(U,V))$ must be lower than +$\varepsilon$, so the $k$ first digits of the fractional part of +$d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}((u,v),(U,V))$ are null. +Let $k_1$ the smallest integer such that, if $V^0=v^0$, ..., $V^{k_1}=v^{k_1}$, + $U^0=u^0$, ..., $U^{\sum_{l=0}^{k_1}V^l-1} = u^{\sum_{l=0}^{k_1}v^l-1}$. +Then $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}((u,v),(U,V))<\varepsilon$. +In other words, any $y$ of the form $(e,((u^0, ..., u^{\sum_{l=0}^{k_1}v^l-1}), +(v^0, ..., v^{k_1}))$ is in $\mathcal{B}(x,\varepsilon)$. + +Let $y^0$ such a point and $z=G_f^{k_1}(y^0) = (e',(u',v'))$. $\Gamma_{\mathcal{P}}(f)$ +being strongly connected, there is a path between $e'$ and $\check{e}$. Denote +by $a_0, \hdots, a_{k_2}$ the edges visited by this path. We denote by +$V^{k_1}=|a_0|$ (number of terms in the finite sequence $a_1$), +$V^{k_1+1}=|a_1|$, ..., $V^{k_1+k_2}=|a_{k_2}|$, and by +$U^{k_1}=a_0^0$, $U^{k_1+1}=a_0^1$, ..., $U^{k_1+V_{k_1}-1}=a_0^{V_{k_1}-1}$, +$U^{k_1+V_{k_1}}=a_1^{0}$, $U^{k_1+V_{k_1}+1}=a_1^{1}$,... + +Let $y=(e,((u^0, ..., u^{\sum_{l=0}^{k_1}v^l-1}, a_0^0, ..., a_0^{|a_0|}, a_1^0, ..., a_1^{|a_1|},..., + a_{k_2}^0, ..., a_{k_2}^{|a_{k_2}|},$ \linebreak + $\check{u}^0, \check{u}^1, ...),(v^0, ..., v^{k_1},|a_0|, ..., + |a_{k_2}|,\check{v}^0, \check{v}^1, ...)))$. So $y\in \mathcal{B}(x,\varepsilon)$ + and $G_{f}^{k_1+k_2}(y)=\check{x}$. + + +Conversely, if $\Gamma_{\mathcal{P}}(f)$ is not strongly connected, then there are +2 vertices $e_1$ and $e_2$ such that there is no path between $e_1$ and $e_2$. +That is, it is impossible to find $(u,v)\in \mathds{S}_{\mathsf{N},\mathcal{P}}$ +and $n \mathds{N}$ such that $G_f^n(e,(u,v))_1=e_2$. The open ball $\mathcal{B}(e_2, 1/2)$ +cannot be reached from any neighborhood of $e_1$, and thus $G_f$ is not transitive. +\end{proof} + + +We show now that, +\begin{prpstn} +If $\Gamma_{\mathcal{P}}(f)$ is strongly connected, then $G_f$ is +regular on $(\mathcal{X}_{\mathsf{N},\mathcal{P}}, d)$. +\end{prpstn} + +\begin{proof} +Let $x=(e,(u,v)) \in \mathcal{X}_{\mathsf{N},\mathcal{P}}$ and $\varepsilon >0$. +As in the proofs of Prop.~\ref{prop:trans}, let $k_1 \in \mathds{N}$ such +that +$$\left\{(e, ((u^0, ..., u^{v^{k_1-1}},U^0, U^1, ...),(v^0, ..., v^{k_1},V^0, V^1, ...)) \mid \right.$$ +$$\left.\forall i,j \in \mathds{N}, U^i \in \llbracket 1, \mathsf{N} \rrbracket, V^j \in \mathcal{P}\right\} +\subset \mathcal{B}(x,\varepsilon),$$ +and $y=G_f^{k_1}(e,(u,v))$. $\Gamma_{\mathcal{P}}(f)$ being strongly connected, +there is at least a path from the Boolean state $y_1$ of $y$ and $e$. +Denote by $a_0, \hdots, a_{k_2}$ the edges of such a path. +Then the point: +$$(e,((u^0, ..., u^{v^{k_1-1}},a_0^0, ..., a_0^{|a_0|}, a_1^0, ..., a_1^{|a_1|},..., + a_{k_2}^0, ..., a_{k_2}^{|a_{k_2}|},u^0, ..., u^{v^{k_1-1}},$$ +$$a_0^0, ...,a_{k_2}^{|a_{k_2}|}...),(v^0, ..., v^{k_1}, |a_0|, ..., |a_{k_2}|,v^0, ..., v^{k_1}, |a_0|, ..., |a_{k_2}|,...))$$ +is a periodic point in the neighborhood $\mathcal{B}(x,\varepsilon)$ of $x$. +\end{proof} + +$G_f$ being topologically transitive and regular, we can thus conclude that +\begin{thrm} +The function $G_f$ is chaotic on $(\mathcal{X}_{\mathsf{N},\mathcal{P}},d)$ if +and only if its iteration graph $\Gamma_{\mathcal{P}}(f)$ is strongly connected. +\end{thrm} + +\begin{crllr} + The pseudorandom number generator $\chi_{\textit{14Secrypt}}$ is not chaotic + on $(\mathcal{X}_{\mathsf{N},\{b\}},d)$ for the negation function. +\end{crllr} +\begin{proof} + In this context, $\mathcal{P}$ is the singleton $\{b\}$. + If $b$ is even, any vertex $e$ of $\Gamma_{\{b\}}(f_0)$ cannot reach + its neighborhood and thus $\Gamma_{\{b\}}(f_0)$ is not strongly connected. + If $b$ is even, any vertex $e$ of $\Gamma_{\{b\}}(f_0)$ cannot reach itself + and thus $\Gamma_{\{b\}}(f_0)$ is not strongly connected. +\end{proof}