X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hdrcouchot.git/blobdiff_plain/ee3d36e30a972a8ed387bd09e148ff498315ae9b..52b5aa442f61f15f582a3412a4a283118e812859:/stabylo.tex?ds=sidebyside diff --git a/stabylo.tex b/stabylo.tex index e926915..dda07a4 100644 --- a/stabylo.tex +++ b/stabylo.tex @@ -197,9 +197,76 @@ attribué à STABYLO. \label{fig:compared} \end{figure} +\section{Stéganalyse de STABYLO}\label{sec:steg:stabylo} +Comme dans le chapitre~\ref{chap:watermarking}, +la base BOSS~\cite{Boss10} de 10,000 images (au format RAW, de taille $512\times 512$ en niveau de gris) a été à nouveau prise pour évaluer +le schéma face à une épreuve de stéganalyse. +Pour des rapport entre le nombre de bits embarqués par +rapport au nombre de pixels entre 1/2 et 1/9, le choix de la +la matrice dupliquée dans STC est celui énoncé dans les travaux de +Filler~\cite{FillerJF11}. + + +Le schéma STABYLO a été systématiquement comparé à HUGO, +EAISLSBMR~\cite{Luo:2010:EAI:1824719.1824720}, WOW et UNIWARD +pour les stratégies fixes (10\%) et adaptives. +Pour établir la valeur de cette dernière stratégie, le filtre de Canny a été +paramétré avec une valeur de $T=3$. +Lorsque $b$ vaut 7, la taile moyenne du message pouvant être embarqué est de +16,445, \textit{i.e.}, un taux d'embarquement moyen de 6,35\%. +Pour chaque image, le nombre de bits embarqué par STABYLO est mémorisé et il +est demandé à chacun des autres schémas d'embarquer ce même nombre de bits. + + +\begin{table*} +\begin{center} +\begin{small} +\setlength{\tabcolsep}{3pt} +\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|} +\hline +Schéma & \multicolumn{3}{c|}{STABYLO} & \multicolumn{2}{c|}{HUGO}& \multicolumn{2}{c|}{EAISLSBMR} & \multicolumn{2}{c|}{WOW} & \multicolumn{2}{c|}{UNIWARD}\\ +\hline +Strétégie & fixe & \multicolumn{2}{c|}{adapt. ($\approx$6.35\%)} & fixe & adapt. & fixe & adapt. & fixe & adapt. & fixe & adapt. \\ +\hline +Ratio & 10\% & +STC(7) & +STC(6) & 10\%& $\approx$6.35\%& 10\%& $\approx$6.35\% & 10\%& $\approx$6.35\%& 10\%& $\approx$6.35\%\\ +\hline +Ensemble Classifier & 0.35 & 0.47 & 0.47 & 0.48 & 0.49 & 0.43 & 0.47 & 0.48 & 0.49 & 0.46 & 0.49 \\ + +\hline +\end{tabular} +\end{small} +\end{center} +\caption{Steganalyse de STABYLO\label{table:steganalyse}.} +\end{table*} + + +Etant considéré comme le plus exact +stéganalyseur dans le domaine spatial, +Ensemble Classifier~\cite{DBLP:journals/tifs/KodovskyFH12} +a été exécuté avec les caractéristiques +CCPEV et SPAM~\cite{DBLP:dblp_conf/mediaforensics/KodovskyPF10}. +Les valeurs des erreurs moyennes de la phase de test sont reprises +au tableau~\ref{table:steganalyse}. +Les schémas HUGO, WOW et UNIWARD sont moins facilement détectables que +STABYLO (mais à quel prix concernant la complexité). +EAILSBMR obtient des résultats semblables à STABYLO, mais encore pour +une complexité plus élevée. +Pour être complet, la figure~\ref{fig:error} montre enfin +que lorsque les taux d'embarquement sont plus élevés, +STABYLO a une sécurité moindre par rapport +aux quatre autres schémas. +\begin{figure} +\begin{center} +\includegraphics[scale=0.5]{images/error} +\end{center} +\caption{Erreurs moyennes lors des tests obtenus par Ensemble Classifier} +\label{fig:error} +\end{figure} - - - - - +\section{Conclusion} +Le schéma STABYLO a été présenté comme une méthode efficace de stéganographie +ayant des résultats comparables +à HUGO, WOW et UNIWARD. +pour de faibles taux d'embarquement. +L'accent a été mis sur la complexité de l'approche pour une implantation +effective, même sur des dispositifs à faible capacité de calcul. \ No newline at end of file