X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hdrcouchot.git/blobdiff_plain/fd3c8d84472bbc887a48fc8e441bd3fafedf96a7..0d1c31c9837325e2dad26554c2cde3a457455158:/annexePreuveMarquageCorrectioncompletude.tex?ds=inline diff --git a/annexePreuveMarquageCorrectioncompletude.tex b/annexePreuveMarquageCorrectioncompletude.tex index dd6ad42..76e6e5c 100644 --- a/annexePreuveMarquageCorrectioncompletude.tex +++ b/annexePreuveMarquageCorrectioncompletude.tex @@ -1,64 +1,34 @@ -\begin{theorem} -La condition de l'algorithme de marquage est nécressaire et suffisante -pour permettre l'extraction du message du média marqué. -\end{theorem} + +\marquagecorrectioncompl* \begin{proof} -For sufficiency, let $d_i$ be the last iteration (date) the element $i \in \Im(S_p)$ -of $x$ has been modified:% is defined by +Pour la suffisance, soit $d_i$ la dernière itération où l'élément $i \in \Im(S_p)$ +de la configuration $x$ a été modifié:% is defined by $$ d_i = \max\{j | S^j_p = i \}. $$ -Let $D=\{d_i|i \in \Im(S_p) \}$. -The set $\Im(S_c)_{|D}$ is thus -the restriction of the image of $S_c$ to $D$. +Soit $D=\{d_i|i \in \Im(S_p) \}$. +L'ensemble $\Im(S_c)_{|D}$ est donc la restriction de l'image de $S_c$ à $D$. -The host that results from this iteration scheme is thus -$(x^l_0,\ldots,x^l_{\mathsf{N}-1})$ where -$x^l_i$ is either $x^{d_i}_i$ if $i$ belongs to $\Im(S_p)$ or $x^0_i$ otherwise. -Moreover, for each $i \in \Im(S_p)$, the element $x^{d_i}_i$ is equal to +Le vecteur qui résutle de ces itérations est donc +$(x^l_0,\ldots,x^l_{\mathsf{N}-1})$ où +$x^l_i$ est soit $x^{d_i}_i$ si $i$ appartient à $\Im(S_p)$ ou $x^0_i$ sinon. +De plus, pour chaque $i \in \Im(S_p)$, l'élément $x^{d_i}_i$ est égal à $m^{d_i-1}_{S^{d_i}_c}$. -Thanks to constraint \ref{itm2:Sc}, all the indexes -$j \in \llbracket 0 ;\mathsf{P} -1 \rrbracket$ belong to +Sous hypothèse que la contrainte imposée soit réalisée, tous les indices +$j \in \llbracket 0 ;\mathsf{P} -1 \rrbracket$ appartiennent à $\Im(S_c)_{|D}$. -Let then $j \in \llbracket 0 ;\mathsf{P} -1 \rrbracket$ s.t. +On a alors $j \in \llbracket 0 ;\mathsf{P} -1 \rrbracket$ tel que $S^{d_i}_c=j$. -Thus we have all the elements $m^._j$ of the vector $m$. -Let us focus now on some $m^{d_i-1}_j$. -Thus the value of $m^0_j$ can be immediately -deduced by counting in $S_c$ how many -times the component $j$ has been switched -before $d_i-1$. +On retrouve ainsi tous les éléments $m^._j$ du vecteur $m$. +A partir de $m^{d_i-1}_j$, +la valeur de $m^0_j$ peut être déduite en comptant dans $S_c$ combien de fois +l'élément $j$ a été invoqué avant $d_i-1$. -Let us focus now on necessity. -If $\Im(S_c)_{|D} \subsetneq +Réciproquement, si $\Im(S_c)_{|D} \subsetneq \llbracket 0 ;\mathsf{P} -1 \rrbracket$, -there exist some $j \in \llbracket 0 ;\mathsf{P} -1 \rrbracket$ that -do not belong to $\Im(S_c)_{|\Im(S_p)}$. -Thus $m_j$ is not present in $x^l$ and the message cannot be extracted. +i lexiste un $j \in \llbracket 0 ;\mathsf{P} -1 \rrbracket$ qui n'appartient pas à $\Im(S_c)_{|\Im(S_p)}$. +Ainsi, $m_j$ n'est pas présent dans $x^l$ et le message ne peut pas extrait. \end{proof} -When the constraint \ref{itm2:Sc} is satisfied, we obtain a scheme -that always finds the original message provided the watermarked media -has not been modified. -In that context, correctness and completeness are established. - - -Thanks to constraint~\ref{itm2:Sc}, the cardinality $k$ of -$\Im(S_p)$ is larger than $\mathsf{P}$. -Otherwise the cardinality of $D$ would be smaller than $\mathsf{P}$ -and similar to the cardinality of $\Im(S_c)_{|D}$, -which is contradictory. - -One bit of index $j$ of the original message $m^0$ -is thus embedded at least twice in $x^l$. -By counting the number of times this bit has been switched in $S_m$, the value of -$m_j$ can be deduced in many places. -Without attack, all these values are equal and the message is immediately -obtained. - After an attack, the value of $m_j$ is obtained as mean value of all -its occurrences. -The scheme is thus complete. -Notice that if the cover is not attacked, the returned message is always equal to the original -due to the definition of the mean function.