]> AND Private Git Repository - hdrcouchot.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
15raro: c'est une distance
authorcouchot <jf.couchot@gmail.com>
Thu, 16 Jul 2015 14:39:54 +0000 (16:39 +0200)
committercouchot <jf.couchot@gmail.com>
Thu, 16 Jul 2015 14:39:54 +0000 (16:39 +0200)
15RairoGen.tex
annexePreuveDistribution.tex

index e4f88582bd0509d851b304af9065da937d114af5..aff664f3a036acce88a8546ae83a7307215bc5c2 100644 (file)
@@ -517,45 +517,76 @@ $\mathcal{X}_{\mathsf{N},\mathcal{P}} = \mathds{B}^\mathsf{N} \times \mathds{S}_
 où $s=(u,v)$ et $\check{s}=(\check{u},\check{v})$ sont dans $ \mathds{S}_{\mathsf{N},\mathcal{P}} = 
 \mathcal{S}_{\llbracket 1, \mathsf{N} \rrbracket} \times \mathcal{S}_\mathcal{P}$. 
 \begin{itemize}
 où $s=(u,v)$ et $\check{s}=(\check{u},\check{v})$ sont dans $ \mathds{S}_{\mathsf{N},\mathcal{P}} = 
 \mathcal{S}_{\llbracket 1, \mathsf{N} \rrbracket} \times \mathcal{S}_\mathcal{P}$. 
 \begin{itemize}
-\item $e$ et $\check{e}$ sont des entiers appartenant à $\llbracket 0, 2^{\mathsf{N}-1} \rrbracket$. The Hamming distance
-on their binary decomposition, that is, the number of dissimilar binary digits, constitutes the integral
-part of $d(X,\check{X})$.
-\item The fractional part is constituted by the differences between $v^0$ and $\check{v}^0$, followed by the differences
-between finite sequences $u^0, u^1, \hdots, u^{v^0-1}$ and  $\check{u}^0, \check{u}^1, \hdots, \check{u}^{\check{v}^0-1}$, followed by 
- differences between $v^1$ and $\check{v}^1$, followed by the differences
-between $u^{v^0}, u^{v^0+1}, \hdots, u^{v^1-1}$ and  $\check{u}^{\check{v}^0}, \check{u}^{\check{v}^0+1}, \hdots, \check{u}^{\check{v}^1-1}$, etc.
-More precisely, let $p = \lfloor \log_{10}{(\max{\mathcal{P}})}\rfloor +1$ and $n = \lfloor \log_{10}{(\mathsf{N})}\rfloor +1$.
+\item $e$ et $\check{e}$ sont des entiers appartenant à $\llbracket 0, 2^{\mathsf{N}-1} \rrbracket$. 
+La distance de Hamming $d_{\mathds{B}^\mathsf{N}}$ sur entre les 
+décompositions binaires de $e$ et de $\check{e}$ (\textit{i.e.}, le 
+le nombre de bits qu'elles ont de différent) constitue 
+la partie entière de $d(X,\check{X})$.
+\item la partie décimale est construite à partir des différences entre 
+$v^0$ et $\check{v}^0$, suivie des différences entre les séquences finies
+$u^0, u^1, \hdots, u^{v^0-1}$ et  $\check{u}^0, \check{u}^1, \hdots, \check{u}^{\check{v}^0-1}$, suivie par les différences entre  $v^1$ et $\check{v}^1$, 
+suivie par les différences entre $u^{v^0}, u^{v^0+1}, \hdots, u^{v^1-1}$ et
+$\check{u}^{\check{v}^0}, \check{u}^{\check{v}^0+1}, \hdots, \check{u}^{\check{v}^1-1}$, etc.
+
+Plus précisemment, soit 
+$p = \lfloor \log_{10}{(\max{\mathcal{P}})}\rfloor +1$ et 
+$n = \lfloor \log_{10}{(\mathsf{N})}\rfloor +1$.
 \begin{itemize}
 \begin{itemize}
-\item The $p$ first digits of $d(x,\check{x})$ is $|v^0-\check{v}^0|$ written in decimal numeration (and with $p$ digits).
-\item The next $n\times \max{(\mathcal{P})}$ digits aim at measuring how much $u^0, u^1, \hdots, u^{v^0-1}$ differs from $\check{u}^0, \check{u}^1, \hdots, \check{u}^{\check{v}^0-1}$. The $n$ first
-digits are $|u^0-\check{u}^0|$. They are followed by 
-$|u^1-\check{u}^1|$ written with $n$ digits, etc.
+\item Les $p$ premiers éléments de $d(x,\check{x})$ sont $|v^0-\check{v}^0|$ 
+  écrits en base 10 et sur $p$ indices;
+\item les $n\times \max{(\mathcal{P})}$ éléments suivants servent 
+  à évaluer de combien $u^0, u^1, \hdots, u^{v^0-1}$ diffère de 
+  $\check{u}^0, \check{u}^1, \hdots, \check{u}^{\check{v}^0-1}$. 
+  Les $n$ premiers éléments sont $|u^0-\check{u}^0|$. Il sont suivis de 
+$|u^1-\check{u}^1|$ écrits à l'aide de $n$ éléments, etc.
 \begin{itemize}
 \begin{itemize}
-\item If
-$v^0=\check{v}^0$, then the process is continued until $|u^{v^0-1}-\check{u}^{\check{v}^0-1}|$ and the fractional
-part of $d(X,\check{X})$ is completed by 0's until reaching
-$p+n\times \max{(\mathcal{P})}$ digits.
-\item If $v^0<\check{v}^0$, then the $ \max{(\mathcal{P})}$  blocs of $n$
-digits are $|u^0-\check{u}^0|$, ..., $|u^{v^0-1}-\check{u}^{v^0-1}|$,
-$\check{u}^{v^0}$ (on $n$ digits), ..., $\check{u}^{\check{v}^0-1}$ (on $n$ digits), followed by 0's if required.
-\item The case $v^0>\check{v}^0$ is dealt similarly.
+\item Si
+$v^0=\check{v}^0$,
+alors le processus se continue jusqu'à $|u^{v^0-1}-\check{u}^{\check{v}^0-1}|$ et la 
+partie décimale de $d(X,\check{X})$ est complétée par des 0
+jusqu'à atteindre 
+$p+n\times \max{(\mathcal{P})}$ éléments.
+\item Si $v^0<\check{v}^0$, alors les $ \max{(\mathcal{P})}$  blocs de $n$
+éléments sont $|u^0-\check{u}^0|$, ..., $|u^{v^0-1}-\check{u}^{v^0-1}|$,
+$\check{u}^{v^0}$ (sur $n$ éléments), ..., $\check{u}^{\check{v}^0-1}$ (sur $n$ éléments), suivi par des 0, si besoin.
+\item Le cas $v^0>\check{v}^0$ est similaire, et donc omis
 \end{itemize}
 \end{itemize}
-\item The next $p$ digits are $|v^1-\check{v}^1|$, etc.
+\item Les $p$ suivants sont $|v^1-\check{v}^1|$, etc.
 \end{itemize}
 \end{itemize}
 
 
 \end{itemize}
 \end{itemize}
 
 
+La fonction $d$ peut se formaliser comme suit:
+$$d(x,\check{x})=d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s})+d_{\mathds{B}^\mathsf{N}}(e,\check{e}),$$
+où: % $p=\max \mathcal{P}$ and:
+\begin{itemize}
+\item $d_{\mathds{B}^\mathsf{N}}$ est la distance de Hamming,
+\item $\forall s=(u,v), \check{s}=(\check{u},\check{v}) \in \mathcal{S}_{\mathsf{N},\mathcal{P}}$,\newline 
+$$\begin{array}{rcl}
+ d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s}) &= &
+   \sum_{k=0}^\infty \dfrac{1}{10^{(k+1)p+kn\max{(\mathcal{P})}}} 
+   \bigg(|v^k - \check{v}^k|  \\
+   & & + \left| \sum_{l=0}^{v^k-1} 
+       \dfrac{u^{\sum_{m=0}^{k-1} v^m +l}}{ 10^{(l+1)n}} -
+       \sum_{l=0}^{\check{v}^k-1} 
+       \dfrac{\check{u}^{\sum_{m=0}^{k-1} \check{v}^m +l}}{ 10^{(l+1)n}} \right| \bigg)
+\end{array}
+$$ %\left| \sum_{l=0}^{v^k-1} \dfrac{u^{\sum_{m=0}^{k-1} v^m +l}}{ 10^{l}} - \sum_{l=0}^{\check{v}^k-1} \dfrac{\check{u}^{\sum_{m=0}^{k-1} \check{v}^m +l}}{ 10^{l}}\right|\right)}.$$
+\end{itemize}
+
 
 
 \begin{xpl}
 
 
 \begin{xpl}
-Consider for instance that $\mathsf{N}=13$, $\mathcal{P}=\{1,2,11\}$ (so $\mathsf{p}=3$), and that
+On considère par exemple 
+$\mathsf{N}=13$, $\mathcal{P}=\{1,2,11\}$ ($\mathsf{p}$ vaut ainsi $3$), 
+et 
 $s=\left\{
 \begin{array}{l}
 u=\underline{6,} ~ \underline{11,5}, ...\\
 v=1,2,...
 \end{array}
 \right.$
 $s=\left\{
 \begin{array}{l}
 u=\underline{6,} ~ \underline{11,5}, ...\\
 v=1,2,...
 \end{array}
 \right.$
-while
+avec 
 $\check{s}=\left\{
 \begin{array}{l}
 \check{u}=\underline{6,4} ~ \underline{1}, ...\\
 $\check{s}=\left\{
 \begin{array}{l}
 \check{u}=\underline{6,4} ~ \underline{1}, ...\\
@@ -563,65 +594,56 @@ $\check{s}=\left\{
 \end{array}
 \right.$.
 
 \end{array}
 \right.$.
 
-So $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s}) = 0.010004000000000000000000011005 ...$
-Indeed, the $p=2$ first digits are 01, as $|v^0-\check{v}^0|=1$, 
-and we use $p$ digits to code this difference ($\mathcal{P}$ being $\{1,2,11\}$, this difference can be equal to 10). We then take the $v^0=1$ first terms of $u$, each term being coded in $n=2$ digits, that is, 06. As we can iterate
-at most $\max{(\mathcal{P})}$ times, we must complete this
-value by some 0's in such a way that the obtained result
-has $n\times \max{(\mathcal{P})}=22$ digits, that is: 
-0600000000000000000000. Similarly, the $\check{v}^0=2$ first
-terms in $\check{u}$ are represented by 0604000000000000000000, and the absolute value of their
-difference is equal to 0004000000000000000000. These digits are concatenated to 01, and
-we start again with the remainder of the sequences.
+Ainsi $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s}) = 0.010004000000000000000000011005 ...$
+En effet, les $p=2$ premiers éléments sont  01, c'est-à-dire 
+$|v^0-\check{v}^0|=1$, 
+et on utilise $p$ éléments pour représenter cette différence
+(Comme $\mathcal{P}=\{1,2,11\}$, cette différence peut valoir 10).
+On prend alors le $v^0=1$ premier terme de $u$, 
+chaque terme étant codé sur $n=2$ éléments, soit 06.
+Comme on itère au plus $\max{(\mathcal{P})}$ fois, 
+on complète cette valeur par des 0 de sorte que 
+la chaine obtenue a $n\times \max{(\mathcal{P})}=22$ éléments, soit:
+0600000000000000000000. 
+De manière similaire, les $\check{v}^0=2$ premiers
+termes de $\check{u}$ sont représentés par 
+0604000000000000000000.
+LA valeur absolue de leur différence est égale à 
+0004000000000000000000.
+Ces éléments sont concaténés avec 01. On peut construire alors le reste de 
+la séquence.
 \end{xpl}
 
 
 \begin{xpl}
 \end{xpl}
 
 
 \begin{xpl}
-Consider now that $\mathsf{N}=9$, and $\mathcal{P}=\{2,7\}$, and that
-
-$s=\left\{
+On considère à présent que  $\mathsf{N}=9$, que $\mathcal{P}=\{2,7\}$ et que
+$$s=\left\{
 \begin{array}{l}
 u=\underline{6,7,} ~ \underline{4,2,} ...\\
 v=2,2,...
 \end{array}
 \begin{array}{l}
 u=\underline{6,7,} ~ \underline{4,2,} ...\\
 v=2,2,...
 \end{array}
-\right.$
-while
-$\check{s}=\left\{
+\right.$$
+avec
+$$\check{s}=\left\{
 \begin{array}{l}
 \check{u}=\underline{4, 9, 6, 3, 6, 6, 7,} ~ \underline{9, 8}, ...\\
 \check{v}=7,2,...
 \end{array}
 \begin{array}{l}
 \check{u}=\underline{4, 9, 6, 3, 6, 6, 7,} ~ \underline{9, 8}, ...\\
 \check{v}=7,2,...
 \end{array}
-\right.$
+\right.
+$$
 
 
-So $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s}) = 0.5173633305600000...$, as $|v^0-\check{v}^0|=5$, $|4963667-6700000| = 1736333$, $|v^1-\check{v}^1|=0$,
-and $|9800000-4200000| = 5600000$.
+Ainsi $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s}) = 0.5173633305600000...$, 
+puisque 
+$|v^0-\check{v}^0|=5$, $|4963667-6700000| = 1736333$, $|v^1-\check{v}^1|=0$,
+et $|9800000-4200000| = 5600000$.
 \end{xpl}
 
 
 
 \end{xpl}
 
 
 
-$d$ can be more rigorously written as follows:
-$$d(x,\check{x})=d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s})+d_{\mathds{B}^\mathsf{N}}(e,\check{e}),$$
-where: % $p=\max \mathcal{P}$ and:
-\begin{itemize}
-\item $d_{\mathds{B}^\mathsf{N}}$ is the Hamming distance,
-\item $\forall s=(u,v), \check{s}=(\check{u},\check{v}) \in \mathcal{S}_{\mathsf{N},\mathcal{P}}$,\newline 
-$$\begin{array}{rcl}
- d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s}) &= &
-   \sum_{k=0}^\infty \dfrac{1}{10^{(k+1)p+kn\max{(\mathcal{P})}}} 
-   \bigg(|v^k - \check{v}^k|  \\
-   & & + \left| \sum_{l=0}^{v^k-1} 
-       \dfrac{u^{\sum_{m=0}^{k-1} v^m +l}}{ 10^{(l+1)n}} -
-       \sum_{l=0}^{\check{v}^k-1} 
-       \dfrac{\check{u}^{\sum_{m=0}^{k-1} \check{v}^m +l}}{ 10^{(l+1)n}} \right| \bigg)
-\end{array}
-$$ %\left| \sum_{l=0}^{v^k-1} \dfrac{u^{\sum_{m=0}^{k-1} v^m +l}}{ 10^{l}} - \sum_{l=0}^{\check{v}^k-1} \dfrac{\check{u}^{\sum_{m=0}^{k-1} \check{v}^m +l}}{ 10^{l}}\right|\right)}.$$
-\end{itemize}
-
-
-Let us show that,
-\begin{prpstn}
-$d$ is a distance on $\mathcal{X}_{\mathsf{N},\mathcal{P}}$.
-\end{prpstn}
+On a la proposition suivante, qui est démontrée en annexes~\ref{anx:generateur}.
+\begin{lemma}
+$d$ est une distance sur $\mathcal{X}_{\mathsf{N},\mathcal{P}}$.
+\end{lemma}
 
 
 \subsection{Le graphe $\textsc{giu}_{\mathcal{P}}(f)$ étendant  $\textsc{giu}(f)$}
 
 
 \subsection{Le graphe $\textsc{giu}_{\mathcal{P}}(f)$ étendant  $\textsc{giu}(f)$}
index 7a05f117e29a674454eb6edb2daeb7cbaaf62f6e..8de466ce821291688220a83a7e5ab240ae0ccfca 100644 (file)
@@ -55,3 +55,33 @@ Ces résultats permettent formuler et de prouver le théorème suivant:
   $M$ est  doublement  stochastique.
 \end{Proof}
 
   $M$ est  doublement  stochastique.
 \end{Proof}
 
+
+
+Montrons que
+\begin{lemma}
+$d$ est une distance sur $\mathcal{X}_{\mathsf{N},\mathcal{P}}$.
+\end{lemma}
+
+
+\begin{proof}
+ $d_{\mathds{B}^\mathsf{N}}$ est la distance de Hamming.
+ Prouvons que  
+ $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}$ est aussi une distance;
+$d$ sera ainsi une distance comme somme de deux distances.
+ \begin{itemize}
+\item De manière évidente, $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s})\geqslant 0$, et si $s=\check{s}$, alors
+$d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s})=0$. 
+Réciproquement si $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s})=0$, alors
+$\forall k \in \mathds{N}, v^k=\check{v}^k$ d'après la définition de $d$.
+Or les éléments entre les positions $p+1$ et  $p+n$ 
+sont nules et correspondent à $|u^0-\check{u}^0|$, 
+on peut conclure que $u^0=\check{u}^0$.
+On peut étendre ce résultat aux $n \times \max{(\mathcal{P})}$ premiers 
+bloc engendrant $u^i=\check{u}^i$, $\forall i \leqslant v^0=\check{v}^0$, 
+et en vérifiant tous les  $n \times \max{(\mathcal{P})}$ blocs, $u=\check{u}$.
+ \item $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}$ est évidemment  symétrique 
+($d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s})=d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(\check{s},s)$). 
+\item l'inégalité triangulaire est établie puisque la valeur absolue la vérifie
+aussi.
+ \end{itemize}
+\end{proof}