From: Jean-François Couchot Date: Mon, 14 Sep 2015 09:31:31 +0000 (+0200) Subject: ajoput d'du fichier oxford X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hdrcouchot.git/commitdiff_plain/a1c6f53ee4176cdde6192aeeb03b29aed8549bbd?ds=sidebyside;hp=8919030d089a2f9508939162c80665d0f9c7987f ajoput d'du fichier oxford --- diff --git a/oxford.tex b/oxford.tex new file mode 100644 index 0000000..92d4d92 --- /dev/null +++ b/oxford.tex @@ -0,0 +1,415 @@ +\JFC{Dire que c'est une synthèse du chapitre 22 de la thèse de Tof} + +Par la suite, le message numérique qu'on cherche à embarquer est +noté $y$ et le support dans lequel se fait l'insertion est noté $x$. + +Le processus de marquage est fondé sur les itérations unaires d'une fonction +selon une stratégie donnée. Cette fonction et cette stratégie +sont paramétrées par un entier naturel permettant à la méthode d'être +appliquable à un média de n'importe quelle taille. +On parle alors respectivement de \emph{mode} et d'\emph{adapteur de stratégies} + +\begin{definition}[Mode] +\label{def:mode} +Soit $\mathsf{N}$ un entier naturel. +Un mode est une application de $\mathds{B}^{\mathsf{N}}$ +dans lui même. +\end{definition} + + + +\begin{definition}[Adapteur de Stratégie] + \label{def:strategy-adapter} + + Un \emph{adapteur de stratégie} est une fonction $\mathcal{S}$ + de $\Nats$ dans l'ensemble des séquences d'entiers + qui associe à chaque entier naturel + $\mathsf{N}$ la suite + $S \in \llbracket 1, n\rrbracket^{\mathds{N}}$. +\end{definition} + + +On définit par exemple l'adapteur CIIS (\emph{Chaotic Iterations with Independent Strategy}) +paramétré par $(K,y,\alpha,l) \in [0,1]\times [0,1] \times ]0, 0.5[ \times \mathds{N}$ +qui associe à chque entier $n \in \Nats$ la suite +$(S^t)^{t \in \mathds{N}}$ définie par: + \begin{itemize} + \item $K^0 = \textit{bin}(y) \oplus \textit{bin}(K)$: $K^0$ est le nombre binaire (sur 32 bits) + égal au ou exclusif (xor) + entre les décompositions binaires sur 32 bits des réels $y$ et $K$ + (il est aussi compris entre 0 et 1), + \item $\forall t \leqslant l, K^{t+1} = F(K^t,\alpha)$, + \item $\forall t \leqslant l, S^t = \left \lfloor n \times K^t \right \rfloor + 1$, + \item $\forall t > l, S^t = 0$, + \end{itemize} +où est la fonction chaotique linéaire par morceau~\cite{Shujun1}. +Les paramètres $K$ et $\alpha$ de cet adapteur de stratégie peuvent être vus +comme des clefs. + +% Les paramère Parameters of CIIS strategy-adapter will be instantiate as follows: +% $K$ is the secret embedding key, $y$ is the secret message, +% $\alpha$ is the threshold of the piecewise linear chaotic map, +% which can be set as $K$ or can act as a second secret key. +% Lastly, $l$ is for the iteration number bound: +% enlarging its value improve the chaotic behavior of the scheme, +% but the time required to achieve the embedding grows too. + +% Another strategy-adapter is the +% \emph{Chaotic Iterations with Dependent Strategy} (CIDS) +% with parameters $(l,X) \in \mathds{N}\times \mathds{B}^\mathds{N}$, +% which is the function that maps any $ n \in \mathds{N}$ to +% the sequence $\left(S^t\right)^{t \in \mathds{N}}$ defined by: +% \begin{itemize} +% \item $\forall t \leqslant l$, if $t \leqslant l$ and $X^t = 1$, +% then $S^t=t$, else $S^t=1$. +% \item $\forall t > l, S^t = 0$. +% \end{itemize} + + + + +% Let us notice that the terms of $x$ that may be replaced by terms issued +% from $y$ are less important than other: they could be changed +% without be perceived as such. More generally, a +% \emph{signification function} +% attaches a weight to each term defining a digital media, +% w.r.t. its position $t$: + +% \begin{definition}[Signification function] +% A \emph{signification function} +% $(u^k)^{k \in \Nats}$. % with a limit equal to 0. +% \end{definition} + + + + + + +On peut attribuer à chaque bit du média hôte $x$ sa valeur d'importance +sous la forme d'un réel. +Ceci se fait à l'aide d'une fonction de signification. + +%We first notice that terms of $x$ that may be replaced by terms issued +%from $y$ are less important than other: they could be changed +%without being perceived as such. More generally, a +%\emph{signification function} +%attaches a weight to each terms defining a digital media, +%depending on its position $t$, as follows. + +\begin{definition}[Fonction de signification ] +Une \emph{fonction de signification } +est une fonction $u$ qui a toute +séquence finie de bit $x$ associe la séquence +$(u^k(x))$ de taille $\mid x \mid$ à valeur dans les réels. +Cette fonction peut dépendre du message $y$ à embarquer, ou non. +\end{definition} + +Pour alléger le discours, par la suite, on nottera $(u^k(x))$ pour $(u^k)$ +lorsque cela n'est pas ambigüe. +Il reste à partionner les bits de $x$ selon qu'ils sont +peu, moyennement ou très significatifs. + +\begin{definition}[Signification des bits]\label{def:msc,lsc} +Soit $u$ une fonction de signification, +$m$ et $M$ deux réels t.q. $m < M$. Alors: +$u_M$, $u_m$ et $u_p$ sont les vecteurs finis respectivements des +\emph{bits les plus significatifs (MSBs)} de $x$, +\emph{bits les moins significatifs (LSBs)} de $x$ +\emph{bits passifs} of $x$ définis par: +\begin{eqnarray*} + u_M &=& \left( k ~ \big|~ k \in \mathds{N} \textrm{ et } u^k + \geqslant M \textrm{ et } k \le \mid x \mid \right) \\ + u_m &=& \left( k ~ \big|~ k \in \mathds{N} \textrm{ et } u^k + \le m \textrm{ et } k \le \mid x \mid \right) \\ + u_p &=& \left( k ~ \big|~ k \in \mathds{N} \textrm{ et } +u^k \in ]m;M[ \textrm{ et } k \le \mid x \mid \right) +\end{eqnarray*} + \end{definition} + +On peut alors définir une fonction de décompostion +puis de recomposition pour un hôte $x$: + + +\begin{definition}[Fonction de décomposition ] +Soit $u$ une fonction de signification, +$m$ et $M$ deux réels t.q $m < M$. +Tout hôte $x$ peut se décomposer en +$(u_M,u_m,u_p,\phi_{M},\phi_{m},\phi_{p})$ +avec +\begin{itemize} +\item $u_M$, $u_m$, et $u_p$ construits comme à la définition~\label{def:msc,lsc}, +\item $\phi_{M} = \left( x^{u^1_M}, x^{u^2_M}, \ldots,x^{u^{|u_M|}_M}\right)$, +\item $\phi_{m} = \left( x^{u^1_m}, x^{u^2_m}, \ldots,x^{u^{|u_m|}_m} \right)$, +\item $\phi_{p} =\left( x^{u^1_p}, x^{u^2_p}, \ldots,x^{u^{|u_p|}_p}\right) $. +\end{itemize} +La fonction qui associe $(u_M,u_m,u_p,\phi_{M},\phi_{m},\phi_{p})$ +pour chaque hôte $x$ est la \emph{fonction de décomposition}, plus tard notée +$\textit{dec}(u,m,M)$ puisuq'elle est paramétrée par +$u$, $m$ and $M$. +\end{definition} + + +\begin{definition}[Recomposition] +Soit un sextuplet +$(u_M,u_m,u_p,\phi_{M},\phi_{m},\phi_{p}) \in +\mathfrak{N} \times +\mathfrak{N} \times +\mathfrak{N} \times +\mathfrak{B} \times +\mathfrak{B} \times +\mathfrak{B} +$ tel que +\begin{itemize} +\item les ensembles $u_M$, $u_m$ et $u_p$ forment une partition de $[n]$; +\item $|u_M| = |\varphi_M|$, $|u_m| = |\varphi_m|$ et $|u_p| = |\varphi_p|$. +\end{itemize} +Soit la base canonique sur l'espace vectoriel $\mathds{R}^{\mid x \mid}$ composée des vecteurs + $e_1, \ldots, e_{\mid x \mid}$. +On peut construire le vecteur +\[ +x = +\sum_{i=1}^{|u_M|} \varphi^i_M . e_{{u^i_M}} + +\sum_{i=1}^{|u_m|} \varphi^i_m .e_{{u^i_m}} + +\sum_{i=1}^{|u_p|} \varphi^i_p. e_{{u^i_p}} +\] +La fonction qui associe $x$ à chaque sextuplet +$(u_M,u_m,u_p,\phi_{M},\phi_{m},\phi_{p})$ défini comme ci-dessus est appelée +\emph{fonction de recomposition}. +\end{definition} + +Un embarquement consiste à modifier les valeurs de +$\phi_{m}$ (de $x$) en tenant compte de $y$. +Cela se formalise comme suit: + +\begin{definition}[Embedding media] +Soit une fonction de décomposition $\textit{dec}(u,m,M)$ be a decomposition function, +$x$ be a host content, +$(u_M,u_m,u_p,\phi_{M},\phi_{m},\phi_{p})$ be its image by $\textit{dec}(u,m,M)$, +and $y$ be a digital media of size $|u_m|$. +The digital media $z$ resulting on the embedding of $y$ into $x$ is +% the +% result of the \emph{embedding} of $y$ in $x$ if +% $$ +% \forall n \in \llbracket1, |x|\rrbracket , z^n = \left\{ +% \begin{array}{ll} +% x^n & \textrm{if } \phi^n_m > m,\\ +% y^n & \textrm{else.} +% \end{array} +% \right. +% $$ +% +% In other words, $z$ is +the image of $(u_M,u_m,u_p,\phi_{M},y,\phi_{p})$ +by the recomposition function $\textit{rec}$. +\end{definition} + +Let us then define the dhCI information hiding scheme +presented in~\cite{gfb10:ip}: + +\begin{definition}[Data hiding dhCI] + \label{def:dhCI} +Let $\textit{dec}(u,m,M)$ be a decomposition function, +$f$ be a mode, +$\mathcal{S}$ be a strategy adapter, +$x$ be an host content,\linebreak +$(u_M,u_m,u_p,\phi_{M},\phi_{m},\phi_{p})$ +be its image by $\textit{dec}(u,m,M)$, +$q$ be a positive natural number, +and $y$ be a digital media of size $l=|u_m|$. + + +The dhCI dissimulation maps any +$(x,y)$ to the digital media $z$ resulting on the embedding of +$\hat{y}$ into $x$, s.t. + +\begin{itemize} +\item We instantiate the mode $f$ with parameter $l=|u_m|$, leading to + the function $f_{l}:\Bool^{l} \rightarrow \Bool^{l}$. +\item We instantiate the strategy adapter $\mathcal{S}$ +with parameter $y$ (and some other ones eventually). +This instantiation leads to the strategy $S_y \in \llbracket 1;l\rrbracket ^{\Nats}$. + +\item We iterate $G_{f_l}$ with initial configuration $(S_y,\phi_{m})$. +\item $\hat{y}$ is finally the $q$-th term of these iterations. +\end{itemize} +\end{definition} + + +To summarize, iterations are realized on the LSCs of the +host content +(the mode gives the iterate function, +the strategy-adapter gives its strategy), +and the last computed configuration is re-injected into the host content, +in place of the former LSCs. + + + +%\begin{definition}[Significance of coefficients]\label{def:msc,lsc} +%Let $(u^k)^{k \in \Nats}$ be a signification function, +%$m$ and $M$ be two reals s.t. $m < M$. Then +%the \emph{most significant coefficients (MSCs)} of $x$ is the finite +% vector $u_M$, +%the \emph{least significant coefficients (LSCs)} of $x$ is the +%finite vector $u_m$, and +%the \emph{passive coefficients} of $x$ is the finite vector $u_p$ such that: +%\begin{eqnarray*} +% u_M &=& \left( k ~ \big|~ k \in \mathds{N} \textrm{ and } u^k +% \geqslant M \textrm{ and } k \le \mid x \mid \right) \\ +% u_m &=& \left( k ~ \big|~ k \in \mathds{N} \textrm{ and } u^k +% \le m \textrm{ and } k \le \mid x \mid \right) \\ +% u_p &=& \left( k ~ \big|~ k \in \mathds{N} \textrm{ and } +%u^k \in ]m;M[ \textrm{ and } k \le \mid x \mid \right) +%\end{eqnarray*} +% \end{definition} + +%For a given host content $x$, +%MSCs are then ranks of $x$ that describe the relevant part +%of the image, whereas LSCs translate its less significant parts. +%We are then ready to decompose an host $x$ into its coefficients and +%then to recompose it. Next definitions formalize these two steps. + +%\begin{definition}[Decomposition function] +%Let $(u^k)^{k \in \Nats}$ be a signification function, +%$\mathfrak{B}$ the set of finite binary sequences, +%$\mathfrak{N}$ the set of finite integer sequences, +%$m$ and $M$ be two reals s.t. $m < M$. +%Any host $x$ may be decomposed into +%$$ +%(u_M,u_m,u_p,\phi_{M},\phi_{m},\phi_{p}) +%\in +%\mathfrak{N} \times +%\mathfrak{N} \times +%\mathfrak{N} \times +%\mathfrak{B} \times +%\mathfrak{B} \times +%\mathfrak{B} +%$$ +%where +%\begin{itemize} +%\item $u_M$, $u_m$, and $u_p$ are coefficients defined in Definition +%\ref{def:msc,lsc}; +%\item $\phi_{M} = \left( x^{u^1_M}, x^{u^2_M}, \ldots,x^{u^{|u_M|}_M}\right)$; +% \item $\phi_{m} = \left( x^{u^1_m}, x^{u^2_m}, \ldots,x^{u^{|u_m|}_m} \right)$; +% \item $\phi_{p} =\left( x^{u^1_p}, x^{u^2_p}, \ldots,x^{u^{|u_p|}_p}\right) $. +% \end{itemize} +%The function that associates the decomposed host to any digital host is +%the \emph{decomposition function}. It is +%further referred as $\textit{dec}(u,m,M)$ since it is parametrized by +%$u$, $m$, and $M$. Notice that $u$ is a shortcut for $(u^k)^{k \in \Nats}$. +%\end{definition} + + +%\begin{definition}[Recomposition] +%Let +%$(u_M,u_m,u_p,\phi_{M},\phi_{m},\phi_{p}) \in +%\mathfrak{N} \times +%\mathfrak{N} \times +%\mathfrak{N} \times +%\mathfrak{B} \times +%\mathfrak{B} \times +%\mathfrak{B} +%$ s.t. +%\begin{itemize} +%\item the sets of elements in $u_M$, elements in $u_m$, and +%elements in $u_p$ are a partition of $\llbracket 1, n\rrbracket$; +%\item $|u_M| = |\varphi_M|$, $|u_m| = |\varphi_m|$, and $|u_p| = |\varphi_p|$. +%\end{itemize} +%One may associate the vector +%$$x = +%\sum_{i=1}^{|u_M|} \varphi^i_M . e_{{u^i_M}} + +%\sum_{i=1}^{|u_m|} \varphi^i_m .e_{{u^i_m}} + +%\sum_{i=1}^{|u_p|} \varphi^i_p. e_{{u^i_p}} +%$$ +%\noindent where $e_i$ is the sequence whose $j-$th term is equal to $\overline{\Delta(i,j)}$, \emph{i.e.}, $(e_i)_{i \in \mathds{N}}$ is the usual basis of the $\mathds{R}-$vectorial space $\left(\mathds{R}^\mathds{N}, +, .\right)$. +%The function that associates $x$ to any +%$(u_M,u_m,u_p,\phi_{M},\phi_{m},\phi_{p})$ following the above constraints +%is called the \emph{recomposition function}. +%\end{definition} + +%The embedding consists to the replacement of the values of +%$\phi_{m}$ of $x$'s LSCs by $y$. +%It then composes the two decomposition and +%recomposition functions seen previously. More formally: + + +%\begin{definition}[Embedding digital media] +%Let $\textit{dec}(u,m,M)$ be a decomposition function, +%$x$ be a host content, +%$(u_M,u_m,u_p,\phi_{M},\phi_{m},\phi_{p})$ be its image by $\textit{dec}(u,m,M)$, +%and $y$ be a digital media of size $|u_m|$. +%The digital media $z$ resulting on the embedding of $y$ into $x$ is +%% the +%% result of the \emph{embedding} of $y$ in $x$ if +%% $$ +%% \forall n \in \llbracket1, |x|\rrbracket , z^n = \left\{ +%% \begin{array}{ll} +%% x^n & \textrm{if } \phi^n_m > m,\\ +%% y^n & \textrm{else.} +%% \end{array} +%% \right. +%% $$ +%% +%% In other words, $z$ is +%the image of $(u_M,u_m,u_p,\phi_{M},y,\phi_{p})$ +%by the recomposition function $\textit{rec}$. +%\end{definition} + +%We can now define the information hiding scheme called \emph{dhCI}: + +%\begin{definition}[Data hiding dhCI] +% \label{def:dhCI} +%Let $\textit{dec}(u,m,M)$ be a decomposition function, +%$f$ be a mode, +%$\mathcal{S}$ be a strategy adapter, +%$x$ be an host content,\linebreak +%$(u_M,u_m,u_p,\phi_{M},\phi_{m},\phi_{p})$ be its image by $\textit{dec}(u,m,M)$, +%and $y$ be a digital media of size $l=|u_m|$. + + +%The \emph{dhCI dissimulation} is the application that maps any +%$(x,y)$ to the digital media $z$ resulting on the embedding of +%$\hat{y}$ into $x$, s.t. + +%\begin{itemize} +%\item We instantiate the mode $f$ with parameter $l=|u_m|$, leading to +% the function $f_{l}:\Bool^{l} \rightarrow \Bool^{l}$. +%\item We instantiate the strategy adapter $\mathcal{S}$ +%with parameter $y$ (and some other ones eventually). +%This instantiation leads to the strategy $S_y \in \llbracket 1;l\rrbracket ^{\Nats}$. + +%\item We iterate $G_{f_l}$ with initial configuration $(S_y,\phi_{m})$. +%\item $\hat{y}$ is finally the $l$-th term of these iterations. +%\end{itemize} +%\end{definition} + + +%To summarize, some iterations are realized on the LSCs of the +%host content +%(the mode gives the iterate function, +%the strategy-adapter gives its strategy), +%and the last computed state is re-injected into the host content, +%in place of the former LSCs. + + + + + + +Notice that in order to preserve the unpredictable behavior of the system, +the size of the digital medias is not fixed. +This approach is thus self adapted to any media, and more particularly to +any size of LSCs. +However this flexibility enlarges the complexity of the presentation: +we had to give Definitions~\ref{def:mode} and~\ref{def:strategy-adapter} +respectively of mode and strategy adapter. + +\begin{figure}[ht] +\centering +%\includegraphics[width=8.5cm]{organigramme2.pdf} +\includegraphics[width=8.5cm]{organigramme2.eps} +\caption{The dhCI dissimulation scheme} +\label{fig:organigramme} +\end{figure} + + +Next section shows how to check whether a media contains a mark.