]> AND Private Git Repository - hpcc2014.git/blobdiff - hpcc.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
v12
[hpcc2014.git] / hpcc.tex
index 2bb39975e3d6ba71a177d778156a87c34aaa6d16..2523d890140406bacea2fee20458bfba73eafa95 100644 (file)
--- a/hpcc.tex
+++ b/hpcc.tex
@@ -650,8 +650,8 @@ Note that the program was run with the following parameters:
 \item Maximum numbers of outer and inner iterations;
 \item Outer and inner precisions on the residual error;
 \item Matrix size $N_x$, $N_y$ and $N_z$;
 \item Maximum numbers of outer and inner iterations;
 \item Outer and inner precisions on the residual error;
 \item Matrix size $N_x$, $N_y$ and $N_z$;
-\item Matrix diagonal value: $6$ (See Equation~(\ref{eq:03}));
-\item Matrix off-diagonal value: $-1$;
+\item Matrix diagonal value: $6$ (see Equation~(\ref{eq:03}));
+\item Matrix off-diagonal values: $-1$;
 \item Communication mode: asynchronous.
 \end{itemize}
 
 \item Communication mode: asynchronous.
 \end{itemize}
 
@@ -664,7 +664,7 @@ asynchronous multisplitting  compared to GMRES with two distant clusters.
 With these settings, Table~\ref{tab.cluster.2x50} shows
 that after setting the bandwidth of the  inter cluster network to  \np[Mbit/s]{5} and a latency in order of one hundredth of millisecond and a processor power
 of one GFlops, an efficiency of about \np[\%]{40} is
 With these settings, Table~\ref{tab.cluster.2x50} shows
 that after setting the bandwidth of the  inter cluster network to  \np[Mbit/s]{5} and a latency in order of one hundredth of millisecond and a processor power
 of one GFlops, an efficiency of about \np[\%]{40} is
-obtained in asynchronous mode for a matrix size of 62 elements. It is noticed that the result remains
+obtained in asynchronous mode for a matrix size of $62^3$ elements. It is noticed that the result remains
 stable even we vary the residual error precision from \np{E-5} to \np{E-9}. By
 increasing the matrix size up to 100 elements, it was necessary to increase the
 CPU power of \np[\%]{50} to \np[GFlops]{1.5} to get the algorithm convergence and the same order of asynchronous mode efficiency.  Maintaining such processor power but increasing network throughput inter cluster up to
 stable even we vary the residual error precision from \np{E-5} to \np{E-9}. By
 increasing the matrix size up to 100 elements, it was necessary to increase the
 CPU power of \np[\%]{50} to \np[GFlops]{1.5} to get the algorithm convergence and the same order of asynchronous mode efficiency.  Maintaining such processor power but increasing network throughput inter cluster up to