\begin{document}
-\title{Simulation of Asynchronous Iterative Numerical Algorithms Using SimGrid}
+\title{Simulation of Asynchronous Iterative Algorithms Using SimGrid}
\author{%
\IEEEauthorblockN{%
\begin{abstract}
-Synchronous iterative algorithms is often less scalable than asynchronous
+Synchronous iterative algorithms are often less scalable than asynchronous
iterative ones. Performing large scale experiments with different kind of
-networks parameters is not easy because with supercomputers such parameters are
+network parameters is not easy because with supercomputers such parameters are
fixed. So one solution consists in using simulations first in order to analyze
what parameters could influence or not the behaviors of an algorithm. In this
paper, we show that it is interesting to use SimGrid to simulate the behaviors
synchronous GMRES algorithm with an asynchronous multisplitting one with
simulations in which we choose some parameters. Both codes are real MPI
codes. Experiments allow us to see when the multisplitting algorithm can be more
-efficience than the GMRES one to solve a 3D Poisson problem.
+efficient than the GMRES one to solve a 3D Poisson problem.
% no keywords for IEEE conferences
increasing complexity of these requested applications combined with a continuous increase of their sizes lead to write
distributed and parallel algorithms requiring significant hardware resources (grid computing, clusters, broadband
network, etc.) but also a non-negligible CPU execution time. We consider in this paper a class of highly efficient
-parallel algorithms called \emph{numerical iterative algorithms} executed in a distributed environment. As their name
+parallel algorithms called \emph{iterative algorithms} executed in a distributed environment. As their name
suggests, these algorithms solve a given problem by successive iterations ($X_{n +1} = f(X_{n})$) from an initial value
$X_{0}$ to find an approximate value $X^*$ of the solution with a very low residual error. Several well-known methods
demonstrate the convergence of these algorithms~\cite{BT89,Bahi07}.
synchronous case, AIAC algorithms can significantly reduce overall execution times by suppressing idle times due to
synchronizations especially in a grid computing context (see~\cite{Bahi07} for more details).
-Parallel numerical applications (synchronous or asynchronous) may have different
-configuration and deployment requirements. Quantifying their resource
-allocation policies and application scheduling algorithms in grid computing
-environments under varying load, CPU power and network speeds is very costly,
-very labor intensive and very time
-consuming~\cite{Calheiros:2011:CTM:1951445.1951450}. The case of AIAC
-algorithms is even more problematic since they are very sensible to the
+Parallel (synchronous or asynchronous) applications may have different
+configuration and deployment requirements. Quantifying their resource
+allocation policies and application scheduling algorithms in grid computing
+environments under varying load, CPU power and network speeds is very costly,
+very labor intensive and very time
+consuming~\cite{Calheiros:2011:CTM:1951445.1951450}. The case of AIAC
+algorithms is even more problematic since they are very sensible to the
execution environment context. For instance, variations in the network bandwidth
-(intra and inter-clusters), in the number and the power of nodes, in the number
-of clusters\dots{} can lead to very different number of iterations and so to
-very different execution times. Then, it appears that the use of simulation
-tools to explore various platform scenarios and to run large numbers of
-experiments quickly can be very promising. In this way, the use of a simulation
-environment to execute parallel iterative algorithms found some interests in
-reducing the highly cost of access to computing resources: (1) for the
-applications development life cycle and in code debugging (2) and in production
-to get results in a reasonable execution time with a simulated infrastructure
-not accessible with physical resources. Indeed, the launch of distributed
-iterative asynchronous algorithms to solve a given problem on a large-scale
-simulated environment challenges to find optimal configurations giving the best
+(intra and inter-clusters), in the number and the power of nodes, in the number
+of clusters\dots{} can lead to very different number of iterations and so to
+very different execution times. Then, it appears that the use of simulation
+tools to explore various platform scenarios and to run large numbers of
+experiments quickly can be very promising. In this way, the use of a simulation
+environment to execute parallel iterative algorithms found some interests in
+reducing the highly cost of access to computing resources: (1) for the
+applications development life cycle and in code debugging (2) and in production
+to get results in a reasonable execution time with a simulated infrastructure
+not accessible with physical resources. Indeed, the launch of distributed
+iterative asynchronous algorithms to solve a given problem on a large-scale
+simulated environment challenges to find optimal configurations giving the best
results with a lowest residual error and in the best of execution time.
To our knowledge, there is no existing work on the large-scale simulation of a
-real AIAC application. The aim of this paper is twofold. First we give a first
+real AIAC application. There are {\bf two contributions} in this paper. First we give a first
approach of the simulation of AIAC algorithms using a simulation tool (i.e. the
-SimGrid toolkit~\cite{SimGrid}). Second, we confirm the effectiveness of
-asynchronous mode algorithms by comparing their performance with the synchronous
-mode. More precisely, we had implemented a program for solving large
+SimGrid toolkit~\cite{SimGrid}). Second, we confirm the effectiveness of the
+asynchronous multisplitting algorithm by comparing its performance with the synchronous
+GMRES. More precisely, we had implemented a program for solving large
linear system of equations by numerical method GMRES (Generalized
Minimal Residual) \cite{ref1}. We show, that with minor modifications of the
initial MPI code, the SimGrid toolkit allows us to perform a test campaign of a