]> AND Private Git Repository - hpcc2014.git/blobdiff - hpcc.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
v12
[hpcc2014.git] / hpcc.tex
index 371c1ed32fed58e2fe128a54f1eb26ccb98478d7..2523d890140406bacea2fee20458bfba73eafa95 100644 (file)
--- a/hpcc.tex
+++ b/hpcc.tex
@@ -493,7 +493,7 @@ simulates the case of distant clusters linked with long distance network as in g
 
 
 Both codes were simulated on a two clusters based network with 50 hosts each, totaling 100 hosts. Various combinations of the above
-factors have provided the results shown in Table~\ref{tab.cluster.2x50}. The problem size of the 3D Poisson problem  ranges from $N_x = N_y = N_z = \text{62}$ to 150 elements (that is from
+factors have provided the results shown in Table~\ref{tab.cluster.2x50}. The problem size of the 3D Poisson problem  ranges from $N=N_x = N_y = N_z = \text{62}$ to 150 elements (that is from
 $\text{62}^\text{3} = \text{\np{238328}}$ to $\text{150}^\text{3} =
 \text{\np{3375000}}$ entries). With the asynchronous multisplitting algorithm the simulated execution time is in average 2.5 times faster than with the synchronous GMRES one. 
 %\AG{Expliquer comment lire les tableaux.}
@@ -523,7 +523,7 @@ $\text{62}^\text{3} = \text{\np{238328}}$ to $\text{150}^\text{3} =
     power (GFlops)
     & 1         & 1         & 1         & 1.5       & 1.5       \\
     \hline
-    size $(n^3)$
+    size $(N)$
     & 62        & 62        & 62        & 100       & 100       \\
     \hline
     Precision
@@ -548,7 +548,7 @@ $\text{62}^\text{3} = \text{\np{238328}}$ to $\text{150}^\text{3} =
     Power (GFlops)
     & 1.5       & 1.5       & 1.5       & 1.5       & 1.5 \\ %      & 1         & 1.5 \\
     \hline
-    size $(n^3)$
+    size $(N)$
     & 110       & 120       & 130       & 140       & 150  \\ %     & 171       & 171 \\
     \hline
     Precision
@@ -650,8 +650,8 @@ Note that the program was run with the following parameters:
 \item Maximum numbers of outer and inner iterations;
 \item Outer and inner precisions on the residual error;
 \item Matrix size $N_x$, $N_y$ and $N_z$;
-\item Matrix diagonal value: $6$ (See Equation~(\ref{eq:03}));
-\item Matrix off-diagonal value: $-1$;
+\item Matrix diagonal value: $6$ (see Equation~(\ref{eq:03}));
+\item Matrix off-diagonal values: $-1$;
 \item Communication mode: asynchronous.
 \end{itemize}
 
@@ -664,7 +664,7 @@ asynchronous multisplitting  compared to GMRES with two distant clusters.
 With these settings, Table~\ref{tab.cluster.2x50} shows
 that after setting the bandwidth of the  inter cluster network to  \np[Mbit/s]{5} and a latency in order of one hundredth of millisecond and a processor power
 of one GFlops, an efficiency of about \np[\%]{40} is
-obtained in asynchronous mode for a matrix size of 62 elements. It is noticed that the result remains
+obtained in asynchronous mode for a matrix size of $62^3$ elements. It is noticed that the result remains
 stable even we vary the residual error precision from \np{E-5} to \np{E-9}. By
 increasing the matrix size up to 100 elements, it was necessary to increase the
 CPU power of \np[\%]{50} to \np[GFlops]{1.5} to get the algorithm convergence and the same order of asynchronous mode efficiency.  Maintaining such processor power but increasing network throughput inter cluster up to