]> AND Private Git Repository - hpcc2014.git/blobdiff - hpcc.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
v7
[hpcc2014.git] / hpcc.tex
index 5559af7edc44594e909e52e27ed79f2e3e9076e2..6a39362badcb21cccadbc9380115562754ad6eed 100644 (file)
--- a/hpcc.tex
+++ b/hpcc.tex
@@ -251,8 +251,8 @@ SimGrid~\cite{SimGrid,casanova+legrand+quinson.2008.simgrid} is a simulation
 framework to study the behavior of large-scale distributed systems.  As its name
 says, it emanates from the grid computing community, but is nowadays used to
 study grids, clouds, HPC or peer-to-peer systems.  The early versions of SimGrid
-date from 1999, but it's still actively developed and distributed as an open
-source software.  Today, it's one of the major generic tools in the field of
+date from 1999, but it is still actively developed and distributed as an open
+source software.  Today, it is one of the major generic tools in the field of
 simulation for large-scale distributed systems.
 
 SimGrid provides several programming interfaces: MSG to simulate Concurrent
@@ -383,8 +383,8 @@ exchanged by message passing using MPI non-blocking communication routines.
 
 \begin{figure}[!t]
 \centering
-  \includegraphics[width=60mm,keepaspectratio]{clustering2}
-\caption{Example of two distant clusters of processors.}
+  \includegraphics[width=60mm,keepaspectratio]{clustering}
+\caption{Example of three distant clusters of processors.}
 \label{fig:4.1}
 \end{figure}
 
@@ -422,7 +422,7 @@ u =0 \text{~on~} \Gamma =\partial\Omega
 \right.
 \label{eq:02}
 \end{equation}
-where $\nabla^2$ is the Laplace operator, $f$ and $u$ are real-valued functions, and $\Omega=[0,1]^3$. The spatial discretization with a finite difference scheme reduces problem~(\ref{eq:02}) to a system of sparse linear equations. Our multisplitting method solves the 3D Poisson problem using a seven point stencil whose the general expression could be written as
+where $\nabla^2$ is the Laplace operator, $f$ and $u$ are real-valued functions, and $\Omega=[0,1]^3$. The spatial discretization with a finite differences scheme reduces problem~(\ref{eq:02}) to a system of sparse linear equations. Our multisplitting method solves the 3D Poisson problem using a seven point stencil whose the general expression could be written as
 \begin{equation}
 \begin{array}{l}
 u(x-1,y,z) + u(x,y-1,z) + u(x,y,z-1)\\+u(x+1,y,z)+u(x,y+1,z)+u(x,y,z+1) \\ -6u(x,y,z)=h^2f(x,y,z),