]> AND Private Git Repository - hpcc2014.git/blobdiff - hpcc.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
ajout d'une ref
[hpcc2014.git] / hpcc.tex
index d9fe798d69f5dee7fe53a5117059b4592d9150fe..11c39dbebe932bdc5515a54f3cf1203d35b7e3cc 100644 (file)
--- a/hpcc.tex
+++ b/hpcc.tex
@@ -151,8 +151,8 @@ approach of the simulation of AIAC algorithms using a simulation tool (i.e. the
 SimGrid toolkit~\cite{SimGrid}). Second, we confirm the effectiveness of
 asynchronous mode algorithms by comparing their performance with the synchronous
 mode. More precisely, we had implemented a program for solving large
 SimGrid toolkit~\cite{SimGrid}). Second, we confirm the effectiveness of
 asynchronous mode algorithms by comparing their performance with the synchronous
 mode. More precisely, we had implemented a program for solving large
-non-symmetric linear system of equations by numerical method GMRES (Generalized
-Minimal Residual) []\AG[]{[]?}\LZK[]{\cite{ref1}}.\LZK{Problème traité dans le papier est symétrique ou asymétrique? (Poisson 3D symétrique?)} We show, that with minor modifications of the
+linear system of equations by numerical method GMRES (Generalized
+Minimal Residual) \cite{ref1}. We show, that with minor modifications of the
 initial MPI code, the SimGrid toolkit allows us to perform a test campaign of a
 real AIAC application on different computing architectures. The simulated
 results we obtained are in line with real results exposed in ??\AG[]{??}.
 initial MPI code, the SimGrid toolkit allows us to perform a test campaign of a
 real AIAC application on different computing architectures. The simulated
 results we obtained are in line with real results exposed in ??\AG[]{??}.
@@ -405,7 +405,7 @@ u^{k+1}(x,y,z)= & u^k(x,y,z) - \frac{1}{6}\times\\
 \end{equation} 
 where the iteration matrix $A$ of size $N_x\times N_y\times N_z$ of the discretized linear system is sparse, symmetric and positive definite. 
 
 \end{equation} 
 where the iteration matrix $A$ of size $N_x\times N_y\times N_z$ of the discretized linear system is sparse, symmetric and positive definite. 
 
-The parallel solving of the 3D Poisson problem with our multisplitting method requires a data partitioning of the problem between clusters and between processors within a cluster. We have choose the 3D partitioning instead of the row-by-row partitioning in order to reduce the data exchanges at sub-domain boundaries. Figure~\ref{fig:4.2} shows an example of the data partitioning of the 3D Poisson problem between two clusters of processors, where each sub-problem is assigned to a processor. In this context, a processor has at most six neighbors within a cluster of in distant clusters with which it shares data at sub-domain boundaries. 
+The parallel solving of the 3D Poisson problem with our multisplitting method requires a data partitioning of the problem between clusters and between processors within a cluster. We have chosen the 3D partitioning instead of the row-by-row partitioning in order to reduce the data exchanges at sub-domain boundaries. Figure~\ref{fig:4.2} shows an example of the data partitioning of the 3D Poisson problem between two clusters of processors, where each sub-problem is assigned to a processor. In this context, a processor has at most six neighbors within a cluster or in distant clusters with which it shares data at sub-domain boundaries. 
 
 \begin{figure}[!t]
 \centering
 
 \begin{figure}[!t]
 \centering