+
\documentclass[conference]{IEEEtran}
\usepackage[T1]{fontenc}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Simulation of the multisplitting method}
+
+\subsection{The multisplitting method}
%Décrire le problème (algo) traité ainsi que le processus d'adaptation à SimGrid.
Let $Ax=b$ be a large sparse system of $n$ linear equations in $\mathbb{R}$, where $A$ is a sparse square and nonsingular matrix, $x$ is the solution vector and $b$ is the right-hand side vector. We use a multisplitting method based on the block Jacobi splitting to solve this linear system on a large scale platform composed of $L$ clusters of processors~\cite{o1985multi}. In this case, we apply a row-by-row splitting without overlapping
\begin{equation*}
where $\nabla^2$ is the Laplace operator, $f$ and $u$ are real-valued functions, and $\Omega=[0,1]^3$. The spatial discretization with a finite difference scheme reduces problem~(\ref{eq:02}) to a system of sparse linear equations. Our multisplitting method solves the 3D Poisson problem using a seven point stencil whose the general expression could be written as
\begin{equation}
\begin{array}{l}
-u(x-1,y,z) + u(x,y-1,z) + u(x,y,z-1)\\+u(x+1,y,z)+u(x,y+1,z)+u(x,y,z+1) \\ -6u(x,y,z)=h^2f(x,y,z)
+u(x-1,y,z) + u(x,y-1,z) + u(x,y,z-1)\\+u(x+1,y,z)+u(x,y+1,z)+u(x,y,z+1) \\ -6u(x,y,z)=h^2f(x,y,z),
%u(x,y,z)= & \frac{1}{6}\times [u(x-1,y,z) + u(x+1,y,z) + \\
% & u(x,y-1,z) + u(x,y+1,z) + \\
% & u(x,y,z-1) + u(x,y,z+1) - \\ & h^2f(x,y,z)],
\end{figure}
+\subsection{Simulation of the multisplitting method using SimGrid and SMPI}
+
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\item Finally, when submitting job batches for execution, the arguments values
passed to the program like the maximum number of iterations or the precision are critical. They allow us to ensure not only the convergence of the
algorithm but also to get the main objective in getting an execution time in asynchronous communication less than in
- synchronous mode. The ratio between the execution time of synchronous
- compared to the asynchronous mode ($t_\text{sync} / t_\text{async}$) is defined as the \emph{relative gain}. So,
+ synchronous mode. The ratio between the simulated execution time of synchronous GMRES algorithm
+ compared to the asynchronous multisplitting algorithm ($t_\text{GMRES} / t_\text{Multisplitting}$) is defined as the \emph{relative gain}. So,
our objective running the algorithm in SimGrid is to obtain a relative gain
greater than 1.
\end{itemize}
simulates the case of distant clusters linked with long distance network as in grid computing context.
-% As a first step,
-The algorithm was run on a two clusters based network with 50 hosts each, totaling 100 hosts. Various combinations of the above
-factors have provided the results shown in Table~\ref{tab.cluster.2x50}. The algorithm convergence with a 3D
-matrix size ranging from $N_x = N_y = N_z = \text{62}$ to 150 elements (that is from
+
+Both codes were simulated on a two clusters based network with 50 hosts each, totaling 100 hosts. Various combinations of the above
+factors have provided the results shown in Table~\ref{tab.cluster.2x50}. The problem size of the 3D Poisson problem ranges from $N_x = N_y = N_z = \text{62}$ to 150 elements (that is from
$\text{62}^\text{3} = \text{\np{238328}}$ to $\text{150}^\text{3} =
-\text{\np{3375000}}$ entries), is obtained in asynchronous in average 2.5 times faster than in the synchronous mode.
-\AG{Expliquer comment lire les tableaux.}
-\CER{J'ai reformulé la phrase par la lecture du tableau. Plus de détails seront lus dans la partie Interprétations et commentaires}
+\text{\np{3375000}}$ entries). With the asynchronous multisplitting algorithm the simulated execution time is in average 2.5 times faster than with the synchronous GMRES one.
+%\AG{Expliquer comment lire les tableaux.}
+%\CER{J'ai reformulé la phrase par la lecture du tableau. Plus de détails seront lus dans la partie Interprétations et commentaires}
% use the same column width for the following three tables
\newlength{\mytablew}\settowidth{\mytablew}{\footnotesize\np{E-11}}
\newenvironment{mytable}[1]{% #1: number of columns for data
\item Maximum number of iterations;
\item Precisions on the residual error;
\item Matrix size $N_x$, $N_y$ and $N_z$;
-\item Matrix diagonal value: \np{1.0} (See~(\ref{eq:03}));
-\item Matrix off-diagonal value: \np{-1}/\np{6} (See~(\ref{eq:03}));
+\item Matrix diagonal value: $6$ (See~(\ref{eq:03}));
+\item Matrix off-diagonal value: $-1$;
\item Communication mode: asynchronous.
\end{itemize}