paper, we show that it is interesting to use SimGrid to simulate the behaviors
of asynchronous iterative algorithms. For that, we compare the behaviour of a
synchronous GMRES algorithm with an asynchronous multisplitting one with
-simulations in which we choose some parameters. Both codes are real MPI
-codes. Simulations allow us to see when the multisplitting algorithm can be more
+simulations which let us easily choose some parameters. Both codes are real MPI
+codes ans simulations allow us to see when the asynchronous multisplitting algorithm can be more
efficient than the GMRES one to solve a 3D Poisson problem.
%\LZK{Ma question est: le bandwidth et latency sont ceux inter-clusters ou pour les deux inter et intra cluster??}
%\CER{Définitivement, les paramètres réseaux variables ici se rapportent au réseau INTER cluster.}
\section{Conclusion}
-The experimental results on executing a parallel iterative algorithm in
-asynchronous mode on an environment simulating a large scale of virtual
-computers organized with interconnected clusters have been presented.
-Our work has demonstrated that using such a simulation tool allow us to
+The simulation of the execution of parallel asynchronous iterative algorithms on large scale clusters has been presented.
+In this work, we show that SIMGRID is an efficient simulation tool that allows us to
reach the following three objectives:
\begin{enumerate}
-\item To have a flexible configurable execution platform resolving the
-hard exercise to access to very limited but so solicited physical
-resources;
+\item To have a flexible configurable execution platform that allows us to
+ simulate asynchronous iterative algorithm for which execution of all parts of
+ the code is necessary. Using simulations before real execution is a nice
+ solution to detect the scalability problems.
+
\item to ensure the algorithm convergence with a reasonable time and
iteration number ;
\item and finally and more importantly, to find the correct combination
executing the algorithm in asynchronous mode.
\end{enumerate}
Our results have shown that in certain conditions, asynchronous mode is
-speeder up to \np[\%]{40} than executing the algorithm in synchronous mode
+speeder up to \np[\%]{40} comparing to the synchronous GMRES method
which is not negligible for solving complex practical problems with more
and more increasing size.
- Several studies have already addressed the performance execution time of
+Several studies have already addressed the performance execution time of
this class of algorithm. The work presented in this paper has
demonstrated an original solution to optimize the use of a simulation
tool to run efficiently an iterative parallel algorithm in asynchronous
mode in a grid architecture.
-\LZK{Perspectives???}
+In future works, we plan to extend our experimentations to larger scale platforms by increasing the number of computing cores and the number of clusters.
+We will also have to increase the size of the input problem which will require the use of a more powerful simulation platform. At last, we expect to compare our simulation results to real execution results on real architectures in order to experimentally validate our study.
\section*{Acknowledgment}
This work is partially funded by the Labex ACTION program (contract ANR-11-LABX-01-01).
-\todo[inline]{The authors would like to thank\dots{}}
+%\todo[inline]{The authors would like to thank\dots{}}
% trigger a \newpage just before the given reference
% number - used to balance the columns on the last page