]> AND Private Git Repository - hpcc2014.git/blobdiff - hpcc.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
11-04-2014
[hpcc2014.git] / hpcc.tex
index e1720c5ec864fb962a3bb0392092ab67edff27d4..53560c522152606550c17ce870e8c3462047c9e3 100644 (file)
--- a/hpcc.tex
+++ b/hpcc.tex
@@ -27,6 +27,8 @@
   \todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}\xspace}
 \newcommand{\RC}[2][inline]{%
   \todo[color=red!10,#1]{\sffamily\textbf{RC:} #2}\xspace}
   \todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}\xspace}
 \newcommand{\RC}[2][inline]{%
   \todo[color=red!10,#1]{\sffamily\textbf{RC:} #2}\xspace}
+\newcommand{\LZK}[2][inline]{%
+  \todo[color=blue!10,#1]{\sffamily\textbf{LZK:} #2}\xspace}
 
 \algnewcommand\algorithmicinput{\textbf{Input:}}
 \algnewcommand\Input{\item[\algorithmicinput]}
 
 \algnewcommand\algorithmicinput{\textbf{Input:}}
 \algnewcommand\Input{\item[\algorithmicinput]}
@@ -59,7 +61,8 @@
 
 \maketitle
 
 
 \maketitle
 
-\RC{Ordre des autheurs pas définitif.\\ Adresse de Lilia: Inria Bordeaux Sud-Ouest, 200 Avenue de la Vieille Tour, 33405 Talence Cedex, France \\ Email: lilia.ziane@inria.fr}
+\RC{Ordre des autheurs pas définitif.}
+\LZK{Adresse de Lilia: Inria Bordeaux Sud-Ouest, 200 Avenue de la Vieille Tour, 33405 Talence Cedex, France \\ Email: lilia.ziane@inria.fr}
 \begin{abstract}
 The abstract goes here.
 \end{abstract}
 \begin{abstract}
 The abstract goes here.
 \end{abstract}
@@ -219,6 +222,8 @@ Algorithm~\ref{algo:01} shows the main key points of the multisplitting method t
 The global convergence of the asynchronous multisplitting solver is detected when the clusters of processors have all converged locally. We implemented the global convergence detection process as follows. On each cluster a master processor is designated (for example the processor with rank $1$) and masters of all clusters are interconnected by a virtual unidirectional ring network (see Figure~\ref{fig:4.1}). During the resolution, a Boolean token circulates around the virtual ring from a master processor to another until the global convergence is achieved. So starting from the cluster with rank $1$, each master processor $i$ sets the token to {\it True} if the local convergence is achieved or to {\it False} otherwise, and sends it to master processor $i+1$. Finally, the global convergence is detected when the master of cluster $1$ receive from the master of cluster $L$ a token set to {\it True}. In this case, the master of cluster $1$ sends a stop message to masters of other clusters. In this work, the local convergence on each cluster $l$ is detected when the following condition is satisfied
 \[(k\leq \MI) \mbox{~or~} (\|X_l^k - X_l^{k+1}\|_{\infty}\leq\epsilon)\]
 where $\MI$ is the maximum number of outer iterations and $\epsilon$ is the tolerance threshold of the error computed between two successive local solution $X_l^k$ and $X_l^{k+1}$. 
 The global convergence of the asynchronous multisplitting solver is detected when the clusters of processors have all converged locally. We implemented the global convergence detection process as follows. On each cluster a master processor is designated (for example the processor with rank $1$) and masters of all clusters are interconnected by a virtual unidirectional ring network (see Figure~\ref{fig:4.1}). During the resolution, a Boolean token circulates around the virtual ring from a master processor to another until the global convergence is achieved. So starting from the cluster with rank $1$, each master processor $i$ sets the token to {\it True} if the local convergence is achieved or to {\it False} otherwise, and sends it to master processor $i+1$. Finally, the global convergence is detected when the master of cluster $1$ receive from the master of cluster $L$ a token set to {\it True}. In this case, the master of cluster $1$ sends a stop message to masters of other clusters. In this work, the local convergence on each cluster $l$ is detected when the following condition is satisfied
 \[(k\leq \MI) \mbox{~or~} (\|X_l^k - X_l^{k+1}\|_{\infty}\leq\epsilon)\]
 where $\MI$ is the maximum number of outer iterations and $\epsilon$ is the tolerance threshold of the error computed between two successive local solution $X_l^k$ and $X_l^{k+1}$. 
+
+\LZK{Description du processus d'adaptation de l'algo multisplitting à SimGrid}
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%