+In recent years, the scalability of large-scale implementation in a
+distributed environment of algorithms becoming more and more complex has
+always been hampered by the limits of physical computing resources
+capacity. One solution is to run the program in a virtual environment
+simulating a real interconnected computers architecture. The results are
+convincing and useful solutions are obtained with far fewer resources
+than in a real platform. However, challenges remain for the convergence
+and efficiency of a class of algorithms that concern us here, namely
+numerical parallel iterative algorithms executed in asynchronous mode,
+especially in a large scale level. Actually, such algorithm requires a
+balance and a compromise between computation and communication time
+during the execution. Two important factors determine the success of the
+experimentation: the convergence of the iterative algorithm on a large
+scale and the execution time reduction in asynchronous mode. Once again,
+from the current work, a simulated environment like SimGrid provides
+accurate results which are difficult or even impossible to obtain in a
+physical platform by exploiting the flexibility of the simulator on the
+computing units clusters and the network structure design. Our
+experimental outputs showed a saving of up to \np[\%]{40} for the algorithm
+execution time in asynchronous mode compared to the synchronous one with
+a residual precision up to \np{E-11}. Such successful results open
+perspectives on experimentations for running the algorithm on a
+simulated large scale growing environment and with larger problem size.
+
+% no keywords for IEEE conferences
+% Keywords: Algorithm distributed iterative asynchronous simulation SimGrid