]> AND Private Git Repository - hpcc2014.git/blobdiff - hpcc.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Reformat table.
[hpcc2014.git] / hpcc.tex
index e1720c5ec864fb962a3bb0392092ab67edff27d4..67609d7ff0ebbba0f7472ba6403f0bd5b0a0ae7d 100644 (file)
--- a/hpcc.tex
+++ b/hpcc.tex
@@ -4,7 +4,7 @@
 \usepackage[utf8]{inputenc}
 \usepackage{amsfonts,amssymb}
 \usepackage{amsmath}
-\usepackage{algorithm}
+%\usepackage{algorithm}
 \usepackage{algpseudocode}
 %\usepackage{amsthm}
 \usepackage{graphicx}
 \usepackage[textsize=footnotesize]{todonotes}
 \newcommand{\AG}[2][inline]{%
   \todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}\xspace}
+\newcommand{\DL}[2][inline]{%
+  \todo[color=yellow!50,#1]{\sffamily\textbf{DL:} #2}\xspace}
+\newcommand{\LZK}[2][inline]{%
+  \todo[color=blue!10,#1]{\sffamily\textbf{LZK:} #2}\xspace}
 \newcommand{\RC}[2][inline]{%
   \todo[color=red!10,#1]{\sffamily\textbf{RC:} #2}\xspace}
+\newcommand{\CER}[2][inline]{%
+  \todo[color=pink!10,#1]{\sffamily\textbf{CER:} #2}\xspace}
 
 \algnewcommand\algorithmicinput{\textbf{Input:}}
 \algnewcommand\Input{\item[\algorithmicinput]}
 \algnewcommand\Output{\item[\algorithmicoutput]}
 
 \newcommand{\MI}{\mathit{MaxIter}}
-
+\newcommand{\Time}[1]{\mathit{Time}_\mathit{#1}}
 
 \begin{document}
 
-\title{Simulation of Asynchronous Iterative Numerical Algorithms Using SimGrid}
+\title{Simulation of Asynchronous Iterative Algorithms Using SimGrid}
 
 \author{%
   \IEEEauthorblockN{%
-    Charles Emile Ramamonjisoa and
-    David Laiymani and
-    Arnaud Giersch and
-    Lilia Ziane Khodja and
-    Raphaël Couturier
+    Charles Emile Ramamonjisoa\IEEEauthorrefmark{1},
+    Lilia Ziane Khodja\IEEEauthorrefmark{2},
+    David Laiymani\IEEEauthorrefmark{1},
+    Arnaud Giersch\IEEEauthorrefmark{1} and
+    Raphaël Couturier\IEEEauthorrefmark{1}
+  }
+  \IEEEauthorblockA{\IEEEauthorrefmark{1}%
+    Femto-ST Institute -- DISC Department\\
+    Université de Franche-Comté,
+    IUT de Belfort-Montbéliard\\
+    19 avenue du Maréchal Juin, BP 527, 90016 Belfort cedex, France\\
+    Email: \email{{charles.ramamonjisoa,david.laiymani,arnaud.giersch,raphael.couturier}@univ-fcomte.fr}
   }
-  \IEEEauthorblockA{%
-    Femto-ST Institute - DISC Department\\
-    Université de Franche-Comté\\
-    Belfort\\
-    Email: \email{{raphael.couturier,arnaud.giersch,david.laiymani,charles.ramamonjisoa}@univ-fcomte.fr}
+  \IEEEauthorblockA{\IEEEauthorrefmark{2}%
+    Inria Bordeaux Sud-Ouest\\
+    200 avenue de la Vieille Tour, 33405 Talence cedex, France \\
+    Email: \email{lilia.ziane@inria.fr}
   }
 }
 
 \maketitle
 
-\RC{Ordre des autheurs pas définitif.\\ Adresse de Lilia: Inria Bordeaux Sud-Ouest, 200 Avenue de la Vieille Tour, 33405 Talence Cedex, France \\ Email: lilia.ziane@inria.fr}
 \begin{abstract}
-The abstract goes here.
+
+Synchronous  iterative  algorithms  are  often less  scalable  than  asynchronous
+iterative  ones.  Performing  large  scale experiments  with  different kind  of
+network parameters is not easy  because with supercomputers such parameters are
+fixed. So one  solution consists in using simulations first  in order to analyze
+what parameters  could influence or not  the behaviors of an  algorithm. In this
+paper, we show  that it is interesting to use SimGrid  to simulate the behaviors
+of asynchronous  iterative algorithms. For that,  we compare the  behaviour of a
+synchronous  GMRES  algorithm  with  an  asynchronous  multisplitting  one  with
+simulations  in  which we  choose  some parameters.   Both  codes  are real  MPI
+codes. Simulations allow us to see when the multisplitting algorithm can be more
+efficient than the GMRES one to solve a 3D Poisson problem.
+
+
+% no keywords for IEEE conferences
+% Keywords: Algorithm distributed iterative asynchronous simulation SimGrid
 \end{abstract}
 
 \section{Introduction}
 
-Parallel computing and high performance computing (HPC) are becoming 
-more and more imperative for solving various problems raised by 
-researchers on various scientific disciplines but also by industrial in 
-the field. Indeed, the increasing complexity of these requested 
-applications combined with a continuous increase of their sizes lead to 
-write distributed and parallel algorithms requiring significant hardware 
-resources (grid computing, clusters, broadband network, etc\dots{}) but
-also a non-negligible CPU execution time. We consider in this paper a
-class of highly efficient parallel algorithms called iterative executed 
-in a distributed environment. As their name suggests, these algorithm 
-solves a given problem that might be NP- complete complex by successive 
-iterations ($X_{n +1} = f(X_{n})$) from an initial value $X_{0}$ to find
-an approximate value $X^*$ of the solution with a very low
-residual error. Several well-known methods demonstrate the convergence 
-of these algorithms. Generally, to reduce the complexity and the 
-execution time, the problem is divided into several \emph{pieces} that will
-be solved in parallel on multiple processing units. The latter will 
-communicate each intermediate results before a new iteration starts 
-until the approximate solution is reached. These distributed parallel 
-computations can be performed either in \emph{synchronous} communication mode
-where a new iteration begin only when all nodes communications are 
-completed, either \emph{asynchronous} mode where processors can continue
-independently without or few synchronization points. Despite the 
-effectiveness of iterative approach, a major drawback of the method is 
-the requirement of huge resources in terms of computing capacity, 
-storage and high speed communication network. Indeed, limited physical 
-resources are blocking factors for large-scale deployment of parallel 
-algorithms. 
-
-In recent years, the use of a simulation environment to execute parallel 
-iterative algorithms found some interests in reducing the highly cost of 
-access to computing resources: (1) for the applications development life 
-cycle and in code debugging (2) and in production to get results in a 
-reasonable execution time with a simulated infrastructure not accessible 
-with physical resources. Indeed, the launch of distributed iterative 
-asynchronous algorithms to solve a given problem on a large-scale 
-simulated environment challenges to find optimal configurations giving 
-the best results with a lowest residual error and in the best of 
-execution time. According our knowledge, no testing of large-scale 
-simulation of the class of algorithm solving to achieve real results has 
-been undertaken to date. We had in the scope of this work implemented a 
-program for solving large non-symmetric linear system of equations by 
-numerical method GMRES (Generalized Minimal Residual) in the simulation
-environment SimGrid. The simulated platform had allowed us to launch
-the application from a modest computing infrastructure by simulating 
-different distributed architectures composed by clusters nodes 
-interconnected by variable speed networks. In addition, it has been 
-permitted to show the effectiveness of asynchronous mode algorithm by 
-comparing its performance with the synchronous mode time. With selected 
-parameters on the network platforms (bandwidth, latency of inter cluster 
-network) and on the clusters architecture (number, capacity calculation 
-power) in the simulated environment, the experimental results have
-demonstrated not only the algorithm convergence within a reasonable time 
-compared with the physical environment performance, but also a time 
-saving of up to \np[\%]{40} in asynchronous mode.
-
-This article is structured as follows: after this introduction, the next 
-section will give a brief description of iterative asynchronous model. 
-Then, the simulation framework SimGrid will be presented with the
-settings to create various distributed architectures. The algorithm of 
-the multi -splitting method used by GMRES written with MPI primitives 
-and its adaptation to SimGrid with SMPI (Simulated MPI) will be in the
-next section. At last, the experiments results carried out will be
-presented before the conclusion which we will announce the opening of 
-our future work after the results.
+Parallel computing and high performance computing (HPC) are becoming  more and more imperative for solving various
+problems raised by  researchers on various scientific disciplines but also by industrial in  the field. Indeed, the
+increasing complexity of these requested  applications combined with a continuous increase of their sizes lead to  write
+distributed and parallel algorithms requiring significant hardware  resources (grid computing, clusters, broadband
+network, etc.) but also a non-negligible CPU execution time. We consider in this paper a class of highly efficient
+parallel algorithms called \emph{iterative algorithms} executed in a distributed environment. As their name
+suggests, these algorithms solve a given problem by successive iterations ($X_{n +1} = f(X_{n})$) from an initial value
+$X_{0}$ to find an approximate value $X^*$ of the solution with a very low residual error. Several well-known methods
+demonstrate the convergence of these algorithms~\cite{BT89,Bahi07}.
+
+Parallelization of such algorithms generally involve the division of the problem into several \emph{blocks} that will
+be solved in parallel on multiple processing units. The latter will communicate each intermediate results before a new
+iteration starts and until the approximate solution is reached. These parallel  computations can be performed either in
+\emph{synchronous} mode where a new iteration begins only when all nodes communications are completed,
+or in \emph{asynchronous} mode where processors can continue independently with few or no synchronization points. For
+instance in the \textit{Asynchronous Iterations~-- Asynchronous Communications (AIAC)} model~\cite{bcvc06:ij}, local
+computations do not need to wait for required data. Processors can then perform their iterations with the data present
+at that time. Even if the number of iterations required before the convergence is generally greater than for the
+synchronous case, AIAC algorithms can significantly reduce overall execution times by suppressing idle times due to
+synchronizations especially in a grid computing context (see~\cite{Bahi07} for more details).
+
+Parallel   (synchronous  or  asynchronous)   applications  may   have  different
+configuration   and  deployment   requirements.    Quantifying  their   resource
+allocation  policies and  application  scheduling algorithms  in grid  computing
+environments under  varying load, CPU power  and network speeds  is very costly,
+very          labor           intensive          and          very          time
+consuming~\cite{Calheiros:2011:CTM:1951445.1951450}.     The   case    of   AIAC
+algorithms  is  even  more problematic  since  they  are  very sensible  to  the
+execution environment context. For instance, variations in the network bandwidth
+(intra and inter-clusters), in the number  and the power of nodes, in the number
+of clusters\dots{}  can lead to  very different number  of iterations and  so to
+very  different execution times.  Then, it  appears that  the use  of simulation
+tools  to  explore  various platform  scenarios  and  to  run large  numbers  of
+experiments quickly can be very promising.  In this way, the use of a simulation
+environment  to execute parallel  iterative algorithms  found some  interests in
+reducing  the  highly  cost  of  access  to computing  resources:  (1)  for  the
+applications development life cycle and  in code debugging (2) and in production
+to get  results in a reasonable  execution time with  a simulated infrastructure
+not  accessible  with physical  resources.  Indeed,  the  launch of  distributed
+iterative  asynchronous algorithms  to solve  a given  problem on  a large-scale
+simulated environment challenges to  find optimal configurations giving the best
+results with a lowest residual error and in the best of execution time.
+
+
+To our knowledge,  there is no existing work on the  large-scale simulation of a
+real  AIAC application.   {\bf  The contribution  of  the present  paper can  be
+  summarised  in two  main  points}.  First  we  give a  first  approach of  the
+simulation  of  AIAC algorithms  using  a  simulation  tool (i.e.   the  SimGrid
+toolkit~\cite{SimGrid}).    Second,  we   confirm  the   effectiveness   of  the
+asynchronous  multisplitting algorithm  by  comparing its  performance with  the
+synchronous GMRES (Generalized Minimal  Residual) \cite{ref1}.  Both these codes
+can be  used to  solve large linear  systems. In  this paper, we  focus on  a 3D
+Poisson  problem.  We show,  that with  minor modifications  of the  initial MPI
+code, the SimGrid  toolkit allows us to  perform a test campaign of  a real AIAC
+application on different computing architectures.
+% The  simulated results  we
+%obtained are  in line with real  results exposed in  ??\AG[]{ref?}. 
+SimGrid  had  allowed us  to  launch the  application  from  a modest  computing
+infrastructure  by simulating  different distributed  architectures  composed by
+clusters  nodes interconnected by  variable speed  networks.  Parameters  of the
+network  platforms  are   the  bandwidth  and  the  latency   of  inter  cluster
+network. Parameters on the cluster's architecture are the number of machines and
+the  computation power  of a  machine.  Simulations show  that the  asynchronous
+multisplitting algorithm  can solve the  3D Poisson problem  approximately twice
+faster than GMRES with two distant clusters.
+
+
+
+This article is structured as follows: after this introduction, the next section
+will  give a  brief  description  of iterative  asynchronous  model.  Then,  the
+simulation framework  SimGrid is presented  with the settings to  create various
+distributed architectures.  Then, the  multisplitting method is presented, it is
+based  on GMRES to  solve each  block obtained  of the  splitting. This  code is
+written with MPI  primitives and its adaptation to  SimGrid with SMPI (Simulated
+MPI) is  detailed in the next  section. At last, the  simulation results carried
+out will be presented before some concluding remarks and future works.
+
  
-\section{The asynchronous iteration model}
+\section{Motivations and scientific context}
+
+As exposed in  the introduction, parallel iterative methods  are now widely used
+in  many  scientific domains.  They  can be  classified  in  three main  classes
+depending on  how iterations  and communications are  managed (for  more details
+readers can refer to~\cite{bcvc06:ij}). In the \textit{Synchronous Iterations~--
+  Synchronous Communications (SISC)} model data are exchanged at the end of each
+iteration. All the processors must begin the same iteration at the same time and
+important  idle  times  on  processors are  generated.  The  \textit{Synchronous
+  Iterations~-- Asynchronous Communications (SIAC)} model can be compared to the
+previous  one  except   that  data  required  on  another   processor  are  sent
+asynchronously  i.e.   without  stopping  current computations.  This  technique
+allows to  partially overlap  communications by computations  but unfortunately,
+the overlapping  is only partial and  important idle times remain.   It is clear
+that, in  a grid computing context,  where the number of  computational nodes is
+large,  heterogeneous  and  widely  distributed,  the idle  times  generated  by
+synchronizations are very penalizing. One way to overcome this problem is to use
+the  \textit{Asynchronous   Iterations~--  Asynchronous  Communications  (AIAC)}
+model.   Here,  local   computations  do   not   need  to   wait  for   required
+data. Processors can then perform their iterations with the data present at that
+time.  Figure~\ref{fig:aiac}  illustrates  this  model  where  the  gray  blocks
+represent the  computation phases.  With  this algorithmic model, the  number of
+iterations required before the convergence is generally greater than for the two
+former classes.  But, and as  detailed in~\cite{bcvc06:ij}, AIAC  algorithms can
+significantly reduce  overall execution times  by suppressing idle times  due to
+synchronizations  especially  in a  grid  computing context.
+%\LZK{Répétition  par  rapport à l'intro}
+
+\begin{figure}[!t]
+  \centering
+    \includegraphics[width=8cm]{AIAC.pdf}
+  \caption{The Asynchronous Iterations~-- Asynchronous Communications model}
+  \label{fig:aiac}
+\end{figure}
 
-Décrire le modèle asynchrone. Je m'en charge (DL)
+\RC{Je serais partant de virer AIAC et laisser asynchronous algorithms... à voir}
 
-\section{SimGrid}
+%% It is very challenging to develop efficient applications for large scale,
+%% heterogeneous and distributed platforms such as computing grids. Researchers and
+%% engineers have to develop techniques for maximizing application performance of
+%% these multi-cluster platforms, by redesigning the applications and/or by using
+%% novel algorithms that can account for the composite and heterogeneous nature of
+%% the platform. Unfortunately, the deployment of such applications on these very
+%% large scale systems is very costly, labor intensive and time consuming. In this
+%% context, it appears that the use of simulation tools to explore various platform
+%% scenarios at will and to run enormous numbers of experiments quickly can be very
+%% promising. Several works\dots{}
 
-Décrire SimGrid~\cite{casanova+legrand+quinson.2008.simgrid} (Arnaud)
+%% \AG{Several works\dots{} what?\\
+%  Le paragraphe suivant se trouve déjà dans l'intro ?}
+In the context of asynchronous algorithms, the number of iterations to reach the
+convergence depends on  the delay of messages. With  synchronous iterations, the
+number of  iterations is exactly  the same than  in the sequential mode  (if the
+parallelization process does  not change the algorithm). So  the difficulty with
+asynchronous algorithms comes from the fact it is necessary to run the algorithm
+with real data. In fact, from an execution to another the order of messages will
+change and the  number of iterations to reach the  convergence will also change.
+According  to all  the parameters  of the  platform (number  of nodes,  power of
+nodes,  inter  and  intra clusrters  bandwith  and  latency,  ....) and  of  the
+algorithm  (number   of  splitting  with  the   multisplitting  algorithm),  the
+multisplitting code  will obtain the solution  more or less  quickly. Or course,
+the GMRES method also depends of the same parameters. As it is difficult to have
+access to  many clusters,  grids or supercomputers  with many  different network
+parameters,  it  is  interesting  to  be  able  to  simulate  the  behaviors  of
+asynchronous iterative algoritms before being able to runs real experiments.
 
 
 
 
 
 
+\section{SimGrid}
+
+SimGrid~\cite{SimGrid,casanova+legrand+quinson.2008.simgrid} is a simulation
+framework to study the behavior of large-scale distributed systems.  As its name
+says, it emanates from the grid computing community, but is nowadays used to
+study grids, clouds, HPC or peer-to-peer systems.  The early versions of SimGrid
+date from 1999, but it's still actively developed and distributed as an open
+source software.  Today, it's one of the major generic tools in the field of
+simulation for large-scale distributed systems.
+
+SimGrid provides several programming interfaces: MSG to simulate Concurrent
+Sequential Processes, SimDAG to simulate DAGs of (parallel) tasks, and SMPI to
+run real applications written in MPI~\cite{MPI}.  Apart from the native C
+interface, SimGrid provides bindings for the C++, Java, Lua and Ruby programming
+languages.  SMPI is the interface that has been used for the work exposed in
+this paper.  The SMPI interface implements about \np[\%]{80} of the MPI 2.0
+standard~\cite{bedaride:hal-00919507}, and supports applications written in C or
+Fortran, with little or no modifications.
+
+Within SimGrid, the execution of a distributed application is simulated on a
+single machine.  The application code is really executed, but some operations
+like the communications are intercepted, and their running time is computed
+according to the characteristics of the simulated execution platform.  The
+description of this target platform is given as an input for the execution, by
+the mean of an XML file.  It describes the properties of the platform, such as
+the computing nodes with their computing power, the interconnection links with
+their bandwidth and latency, and the routing strategy.  The simulated running
+time of the application is computed according to these properties.
+
+To compute the durations of the operations in the simulated world, and to take
+into account resource sharing (e.g. bandwidth sharing between competing
+communications), SimGrid uses a fluid model.  This allows to run relatively fast
+simulations, while still keeping accurate
+results~\cite{bedaride:hal-00919507,tomacs13}.  Moreover, depending on the
+simulated application, SimGrid/SMPI allows to skip long lasting computations and
+to only take their duration into account.  When the real computations cannot be
+skipped, but the results have no importance for the simulation results, there is
+also the possibility to share dynamically allocated data structures between
+several simulated processes, and thus to reduce the whole memory consumption.
+These two techniques can help to run simulations at a very large scale.
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 \section{Simulation of the multisplitting method}
 %Décrire le problème (algo) traité ainsi que le processus d'adaptation à SimGrid.
-Let $Ax=b$ be a large sparse system of $n$ linear equations in $\mathbb{R}$, where $A$ is a sparse square and nonsingular matrix, $x$ is the solution vector and $b$ is the right-hand side vector. We use a multisplitting method based on the block Jacobi splitting to solve this linear system on a large scale platform composed of $L$ clusters of processors. In this case, we apply a row-by-row splitting without overlapping  
-\[
-\left(\begin{array}{ccc}
-A_{11} & \cdots & A_{1L} \\
-\vdots & \ddots & \vdots\\
-A_{L1} & \cdots & A_{LL}
-\end{array} \right)
-\times 
-\left(\begin{array}{c}
-X_1 \\
-\vdots\\
-X_L
-\end{array} \right)
-=
-\left(\begin{array}{c}
-B_1 \\
-\vdots\\
-B_L
-\end{array} \right)\] 
-in such a way that successive rows of matrix $A$ and both vectors $x$ and $b$ are assigned to one cluster, where for all $l,m\in\{1,\ldots,L\}$ $A_{lm}$ is a rectangular block of $A$ of size $n_l\times n_m$, $X_l$ and $B_l$ are sub-vectors of $x$ and $b$, respectively, each of size $n_l$ and $\sum_{l} n_l=\sum_{m} n_m=n$.
+Let $Ax=b$ be a large sparse system of $n$ linear equations in $\mathbb{R}$, where $A$ is a sparse square and nonsingular matrix, $x$ is the solution vector and $b$ is the right-hand side vector. We use a multisplitting method based on the block Jacobi splitting to solve this linear system on a large scale platform composed of $L$ clusters of processors~\cite{o1985multi}. In this case, we apply a row-by-row splitting without overlapping  
+\begin{equation*}
+  \left(\begin{array}{ccc}
+      A_{11} & \cdots & A_{1L} \\
+      \vdots & \ddots & \vdots\\
+      A_{L1} & \cdots & A_{LL}
+    \end{array} \right)
+  \times
+  \left(\begin{array}{c}
+      X_1 \\
+      \vdots\\
+      X_L
+    \end{array} \right)
+  =
+  \left(\begin{array}{c}
+      B_1 \\
+      \vdots\\
+      B_L
+    \end{array} \right)
+\end{equation*}
+in such a way that successive rows of matrix $A$ and both vectors $x$ and $b$
+are assigned to one cluster, where for all $\ell,m\in\{1,\ldots,L\}$, $A_{\ell
+  m}$ is a rectangular block of $A$ of size $n_\ell\times n_m$, $X_\ell$ and
+$B_\ell$ are sub-vectors of $x$ and $b$, respectively, of size $n_\ell$ each,
+and $\sum_{\ell} n_\ell=\sum_{m} n_m=n$.
 
 The multisplitting method proceeds by iteration to solve in parallel the linear system on $L$ clusters of processors, in such a way each sub-system
 \begin{equation}
-\left\{
-\begin{array}{l}
-A_{ll}X_l = Y_l \mbox{,~such that}\\
-Y_l = B_l - \displaystyle\sum_{\substack{m=1\\ m\neq l}}^{L}A_{lm}X_m
-\end{array}
-\right.
-\label{eq:4.1}
+  \label{eq:4.1}
+  \left\{
+    \begin{array}{l}
+      A_{\ell\ell}X_\ell = Y_\ell \text{, such that}\\
+      Y_\ell = B_\ell - \displaystyle\sum_{\substack{m=1\\ m\neq \ell}}^{L}A_{\ell m}X_m
+    \end{array}
+  \right.
 \end{equation}
-is solved independently by a cluster and communication are required to update the right-hand side sub-vector $Y_l$, such that the sub-vectors $X_m$ represent the data dependencies between the clusters. As each sub-system (\ref{eq:4.1}) is solved in parallel by a cluster of processors, our multisplitting method uses an iterative method as an inner solver which is easier to parallelize and more scalable than a direct method. In this work, we use the parallel algorithm of GMRES method~\cite{ref1} which is one of the most used iterative method by many researchers. 
-
-\begin{algorithm}
-\caption{A multisplitting solver with GMRES method}
+is solved independently by a cluster and communications are required to update
+the right-hand side sub-vector $Y_\ell$, such that the sub-vectors $X_m$
+represent the data dependencies between the clusters. As each sub-system
+(\ref{eq:4.1}) is solved in parallel by a cluster of processors, our
+multisplitting method uses an iterative method as an inner solver which is
+easier to parallelize and more scalable than a direct method. In this work, we
+use the parallel algorithm of GMRES method~\cite{ref1} which is one of the most
+used iterative method by many researchers.
+
+\begin{figure}[!t]
+  %%% IEEE instructions forbid to use an algorithm environment here, use figure
+  %%% instead
 \begin{algorithmic}[1]
-\Input $A_l$ (sparse sub-matrix), $B_l$ (right-hand side sub-vector)
-\Output $X_l$ (solution sub-vector)\vspace{0.2cm}
-\State Load $A_l$, $B_l$
-\State Initialize the solution vector $x^0$
+\Input $A_\ell$ (sparse sub-matrix), $B_\ell$ (right-hand side sub-vector)
+\Output $X_\ell$ (solution sub-vector)\medskip
+
+\State Load $A_\ell$, $B_\ell$
+\State Set the initial guess $x^0$
 \For {$k=0,1,2,\ldots$ until the global convergence}
 \State Restart outer iteration with $x^0=x^k$
 \State Inner iteration: \Call{InnerSolver}{$x^0$, $k+1$}
-\State Send shared elements of $X_l^{k+1}$ to neighboring clusters
-\State Receive shared elements in $\{X_m^{k+1}\}_{m\neq l}$
+\State\label{algo:01:send} Send shared elements of $X_\ell^{k+1}$ to neighboring clusters
+\State\label{algo:01:recv} Receive shared elements in $\{X_m^{k+1}\}_{m\neq \ell}$
 \EndFor
 
 \Statex
 
 \Function {InnerSolver}{$x^0$, $k$}
-\State Compute local right-hand side $Y_l$: \[Y_l = B_l - \sum\nolimits^L_{\substack{m=1 \\m\neq l}}A_{lm}X_m^0\]
-\State Solving sub-system $A_{ll}X_l^k=Y_l$ with the parallel GMRES method
-\State \Return $X_l^k$
+\State Compute local right-hand side $Y_\ell$:
+       \begin{equation*}
+         Y_\ell = B_\ell - \sum\nolimits^L_{\substack{m=1\\ m\neq \ell}}A_{\ell m}X_m^0
+       \end{equation*}
+\State Solving sub-system $A_{\ell\ell}X_\ell^k=Y_\ell$ with the parallel GMRES method
+\State \Return $X_\ell^k$
 \EndFunction
 \end{algorithmic}
+\caption{A multisplitting solver with GMRES method}
 \label{algo:01}
-\end{algorithm}
-
-Algorithm~\ref{algo:01} shows the main key points of the multisplitting method to solve a large sparse linear system. This algorithm is based on an outer-inner iteration method where the parallel synchronous GMRES method is used to solve the inner iteration. It is executed in parallel by each cluster of processors. For all $l,m\in\{1,\ldots,L\}$, the matrices and vectors with the subscript $l$ represent the local data for cluster $l$, while $\{A_{lm}\}_{m\neq l}$ are off-diagonal matrices of sparse matrix $A$ and $\{X_m\}_{m\neq l}$ contain vector elements of solution $x$ shared with neighboring clusters. At every outer iteration $k$, asynchronous communications are performed between processors of the local cluster and those of distant clusters (lines $6$ and $7$ in Algorithm~\ref{algo:01}). The shared vector elements of the solution $x$ are exchanged by message passing using MPI non-blocking communication routines. 
+\end{figure}
 
-\begin{figure}
+Algorithm on Figure~\ref{algo:01} shows the main key points of the
+multisplitting method to solve a large sparse linear system. This algorithm is
+based on an outer-inner iteration method where the parallel synchronous GMRES
+method is used to solve the inner iteration. It is executed in parallel by each
+cluster of processors. For all $\ell,m\in\{1,\ldots,L\}$, the matrices and
+vectors with the subscript $\ell$ represent the local data for cluster $\ell$,
+while $\{A_{\ell m}\}_{m\neq \ell}$ are off-diagonal matrices of sparse matrix
+$A$ and $\{X_m\}_{m\neq \ell}$ contain vector elements of solution $x$ shared
+with neighboring clusters. At every outer iteration $k$, asynchronous
+communications are performed between processors of the local cluster and those
+of distant clusters (lines~\ref{algo:01:send} and~\ref{algo:01:recv} in
+Figure~\ref{algo:01}). The shared vector elements of the solution $x$ are
+exchanged by message passing using MPI non-blocking communication routines.
+
+\begin{figure}[!t]
 \centering
   \includegraphics[width=60mm,keepaspectratio]{clustering}
 \caption{Example of three clusters of processors interconnected by a virtual unidirectional ring network.}
 \label{fig:4.1}
 \end{figure}
 
-The global convergence of the asynchronous multisplitting solver is detected when the clusters of processors have all converged locally. We implemented the global convergence detection process as follows. On each cluster a master processor is designated (for example the processor with rank $1$) and masters of all clusters are interconnected by a virtual unidirectional ring network (see Figure~\ref{fig:4.1}). During the resolution, a Boolean token circulates around the virtual ring from a master processor to another until the global convergence is achieved. So starting from the cluster with rank $1$, each master processor $i$ sets the token to {\it True} if the local convergence is achieved or to {\it False} otherwise, and sends it to master processor $i+1$. Finally, the global convergence is detected when the master of cluster $1$ receive from the master of cluster $L$ a token set to {\it True}. In this case, the master of cluster $1$ sends a stop message to masters of other clusters. In this work, the local convergence on each cluster $l$ is detected when the following condition is satisfied
-\[(k\leq \MI) \mbox{~or~} (\|X_l^k - X_l^{k+1}\|_{\infty}\leq\epsilon)\]
-where $\MI$ is the maximum number of outer iterations and $\epsilon$ is the tolerance threshold of the error computed between two successive local solution $X_l^k$ and $X_l^{k+1}$. 
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
+The global convergence of the asynchronous multisplitting solver is detected
+when the clusters of processors have all converged locally. We implemented the
+global convergence detection process as follows. On each cluster a master
+processor is designated (for example the processor with rank 1) and masters of
+all clusters are interconnected by a virtual unidirectional ring network (see
+Figure~\ref{fig:4.1}). During the resolution, a Boolean token circulates around
+the virtual ring from a master processor to another until the global convergence
+is achieved. So starting from the cluster with rank 1, each master processor $i$
+sets the token to \textit{True} if the local convergence is achieved or to
+\textit{False} otherwise, and sends it to master processor $i+1$. Finally, the
+global convergence is detected when the master of cluster 1 receives from the
+master of cluster $L$ a token set to \textit{True}. In this case, the master of
+cluster 1 broadcasts a stop message to masters of other clusters. In this work,
+the local convergence on each cluster $\ell$ is detected when the following
+condition is satisfied
+\begin{equation*}
+  (k\leq \MI) \text{ or } (\|X_\ell^k - X_\ell^{k+1}\|_{\infty}\leq\epsilon)
+\end{equation*}
+where $\MI$ is the maximum number of outer iterations and $\epsilon$ is the
+tolerance threshold of the error computed between two successive local solution
+$X_\ell^k$ and $X_\ell^{k+1}$.
+
+
+
+In this paper, we solve the 3D Poisson problem whose the mathematical model is 
+\begin{equation}
+\left\{
+\begin{array}{l}
+\nabla^2 u = f \text{~in~} \Omega \\
+u =0 \text{~on~} \Gamma =\partial\Omega
+\end{array}
+\right.
+\label{eq:02}
+\end{equation}
+where $\nabla^2$ is the Laplace operator, $f$ and $u$ are real-valued functions, and $\Omega=[0,1]^3$. The spatial discretization with a finite difference scheme reduces problem~(\ref{eq:02}) to a system of sparse linear equations. The general iteration scheme of our multisplitting method in a 3D domain using a seven point stencil could be written as 
+\begin{equation}
+\begin{array}{ll}
+u^{k+1}(x,y,z)= & u^k(x,y,z) - \frac{1}{6}\times\\
+               & (u^k(x-1,y,z) + u^k(x+1,y,z) + \\
+               & u^k(x,y-1,z) + u^k(x,y+1,z) + \\
+               & u^k(x,y,z-1) + u^k(x,y,z+1)),
+\end{array}
+\label{eq:03}
+\end{equation} 
+where the iteration matrix $A$ of size $N_x\times N_y\times N_z$ of the discretized linear system is sparse, symmetric and positive definite. 
 
+The parallel solving of the 3D Poisson problem with our multisplitting method requires a data partitioning of the problem between clusters and between processors within a cluster. We have chosen the 3D partitioning instead of the row-by-row partitioning in order to reduce the data exchanges at sub-domain boundaries. Figure~\ref{fig:4.2} shows an example of the data partitioning of the 3D Poisson problem between two clusters of processors, where each sub-problem is assigned to a processor. In this context, a processor has at most six neighbors within a cluster or in distant clusters with which it shares data at sub-domain boundaries. 
 
+\begin{figure}[!t]
+\centering
+  \includegraphics[width=80mm,keepaspectratio]{partition}
+\caption{Example of the 3D data partitioning between two clusters of processors.}
+\label{fig:4.2}
+\end{figure}
 
 
 
 
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+We did not encounter major blocking problems when adapting the multisplitting algorithm previously described to a simulation environment like SimGrid unless some code 
+debugging. Indeed, apart from the review of the program sequence for asynchronous exchanges between processors within a cluster or between clusters, the algorithm was executed successfully with SMPI and provided identical outputs as those obtained with direct execution under MPI. In synchronous 
+mode, the execution of the program raised no particular issue but in asynchronous mode, the review of the sequence of MPI\_Isend, MPI\_Irecv and MPI\_Waitall instructions
+and with the addition of the primitive MPI\_Test was needed to avoid a memory fault due to an infinite loop resulting from the non-convergence of the algorithm.
+\CER{On voulait en fait montrer la simplicité de l'adaptation de l'algo a SimGrid. Les problèmes rencontrés décrits dans ce paragraphe concerne surtout le mode async}\LZK{OK. J'aurais préféré avoir un peu plus de détails sur l'adaptation de la version async} 
+\CER{Le problème majeur sur l'adaptation MPI vers SMPI pour la partie asynchrone de l'algorithme a été le plantage en SMPI de Waitall après un Isend et Irecv. J'avais proposé un workaround en utilisant un MPI\_wait séparé pour chaque échange a la place d'un waitall unique pour TOUTES les échanges, une instruction qui semble bien fonctionner en MPI. Ce workaround aussi fonctionne bien. Mais après, tu as modifié le programme avec l'ajout d'un MPI\_Test, au niveau de la routine de détection de la convergence et du coup, l'échange global avec waitall a aussi fonctionné.}
+Note here that the use of SMPI functions optimizer for memory footprint and CPU usage is not recommended knowing that one wants to get real results by simulation.
+As mentioned, upon this adaptation, the algorithm is executed as in the real life in the simulated environment after the following minor changes. First, the scope of all declared 
+global variables have been moved to local to subroutine. Indeed, global variables generate side effects arising from the concurrent access of 
+shared memory used by threads simulating each computing unit in the SimGrid architecture. 
+%Second, the alignment of certain types of variables such as ``long int'' had also to be reviewed.
+\AG{À propos de ces problèmes d'alignement, en dire plus si ça a un intérêt, ou l'enlever.}
+\CER{Ce problème fait partie des modifications que j'ai dû faire dans l'adaptation du programme MPI vers SMPI. IL découle de la différence de la taille des mots en mémoire : en 32 bits, pour les variables declarees en long int, on garde dans les instructions de sortie (printf, sprintf, ...) le format \%lu sinon en 64 bits, on le substitue par \%llu. La phrase a été enlevé.} 
+Second, some compilation errors on MPI\_Waitall and MPI\_Finalize primitives have been fixed with the latest version of SimGrid.
+In total, the initial MPI program running on the simulation environment SMPI gave after a very simple adaptation the same results as those obtained in a real 
+environment. We have successfully executed the code in synchronous mode using parallel GMRES algorithm compared with our multisplitting algorithm in asynchronous mode after few modifications. 
+
+
+
+\section{Simulation results}
+
+When the \textit{real} application runs in the simulation environment and produces the expected results, varying the input
+parameters and the program arguments allows us to compare outputs from the code execution. We have noticed from this
+study that the results depend on the following parameters:  
+\begin{itemize}
+\item At the network level, we found that the most critical values are the
+  bandwidth and the network latency.
+\item Hosts processors power (GFlops) can also influence on the results.
+\item Finally, when submitting job batches for execution, the arguments values
+  passed to the program like the maximum number of iterations or the precision are critical. They allow us to ensure not only the convergence of the
+  algorithm but also to get the main objective in getting an execution time in asynchronous communication less than in
+  synchronous mode. The ratio between the execution time of synchronous
+  compared to the asynchronous mode ($t_\text{sync} / t_\text{async}$) is defined as the \emph{relative gain}. So,
+  our objective running the algorithm in SimGrid is to obtain a relative gain
+  greater than 1.
+  \AG{$t_\text{async} / t_\text{sync} > 1$, l'objectif est donc que ça dure plus
+    longtemps (que ça aille moins vite) en asynchrone qu'en synchrone ?
+    Ce n'est pas plutôt l'inverse ?}
+  \CER{J'ai modifie la phrase.}
+\end{itemize}
 
-\section{Experimental results}
+A priori, obtaining a relative gain greater than 1 would be difficult in a local
+area network configuration where the synchronous mode will take advantage on the
+rapid exchange of information on such high-speed links. Thus, the methodology
+adopted was to launch the application on a clustered network. In this
+configuration, degrading the inter-cluster network performance will penalize the
+synchronous mode allowing to get a relative gain greater than 1.  This action
+simulates the case of distant clusters linked with long distance network as in grid computing context.
+
+
+% As a first step, 
+The algorithm was run on a two clusters based network with 50 hosts each, totaling 100 hosts. Various combinations of the above
+factors have provided the results shown in Table~\ref{tab.cluster.2x50}. The algorithm convergence with a 3D
+matrix size ranging from $N_x = N_y = N_z = \text{62}$ to 150 elements (that is from
+$\text{62}^\text{3} = \text{\np{238328}}$ to $\text{150}^\text{3} =
+\text{\np{3375000}}$ entries), is obtained in asynchronous in average 2.5 times speeder than the synchronous mode. 
+\AG{Expliquer comment lire les tableaux.}
+\CER{J'ai reformulé la phrase par la lecture du tableau. Plus de détails seront lus dans la partie Interprétations et commentaires}
+% use the same column width for the following three tables
+\newlength{\mytablew}\settowidth{\mytablew}{\footnotesize\np{E-11}}
+\newenvironment{mytable}[1]{% #1: number of columns for data
+  \renewcommand{\arraystretch}{1.3}%
+  \begin{tabular}{|>{\bfseries}r%
+                  |*{#1}{>{\centering\arraybackslash}p{\mytablew}|}}}{%
+    \end{tabular}}
+
+\begin{table}[!t]
+  \centering
+  \caption{2 clusters, each with 50 nodes}
+  \label{tab.cluster.2x50}
 
-When the ``real'' application runs in the simulation environment and produces
-the expected results, varying the input parameters and the program arguments
-allows us to compare outputs from the code execution. We have noticed from this
-study that the results depend on the following parameters: (1) at the network
-level, we found that the most critical values are the bandwidth (bw) and the
-network latency (lat). (2) Hosts power (GFlops) can also influence on the
-results. And finally, (3) when submitting job batches for execution, the
-arguments values passed to the program like the maximum number of iterations or
-the ``external'' precision are critical to ensure not only the convergence of the
-algorithm but also to get the main objective of the experimentation of the
-simulation in having an execution time in asynchronous less than in synchronous
-mode, in others words, in having a ``speedup'' less than 1 (Speedup = Execution
-time in synchronous mode / Execution time in asynchronous mode).
+  \begin{mytable}{5}
+    \hline
+    bandwidth (Mbit/s)
+    & 5         & 5         & 5         & 5         & 5         \\
+    \hline
+    latency (ms)
+    & 0.02      & 0.02      & 0.02      & 0.02      & 0.02      \\
+    \hline
+    power (GFlops)
+    & 1         & 1         & 1         & 1.5       & 1.5       \\
+    \hline
+    size
+    & 62        & 62        & 62        & 100       & 100       \\
+    \hline
+    Precision
+    & \np{E-5}  & \np{E-8}  & \np{E-9}  & \np{E-11} & \np{E-11} \\
+    \hline
+    \hline
+    Relative gain
+    & 2.52      & 2.55      & 2.52      & 2.57      & 2.54      \\
+    \hline
+  \end{mytable}
+
+  \bigskip
+
+  \begin{mytable}{5}
+    \hline
+    bandwidth (Mbit/s)
+    & 50        & 50        & 50        & 50        & 50 \\ %       & 10        & 10 \\
+    \hline
+    latency (ms)
+    & 0.02      & 0.02      & 0.02      & 0.02      & 0.02 \\ %      & 0.03      & 0.01 \\
+    \hline
+    Power (GFlops)
+    & 1.5       & 1.5       & 1.5       & 1.5       & 1.5 \\ %      & 1         & 1.5 \\
+    \hline
+    size
+    & 110       & 120       & 130       & 140       & 150  \\ %     & 171       & 171 \\
+    \hline
+    Precision
+    & \np{E-11} & \np{E-11} & \np{E-11} & \np{E-11} & \np{E-11} \\ % & \np{E-5}  & \np{E-5} \\
+    \hline
+    \hline
+    Relative gain
+    & 2.53      & 2.51     & 2.58     & 2.55     & 2.54   \\ %  & 1.59      & 1.29 \\
+    \hline
+  \end{mytable}
+\end{table}
+  
+%Then we have changed the network configuration using three clusters containing
+%respectively 33, 33 and 34 hosts, or again by on hundred hosts for all the
+%clusters. In the same way as above, a judicious choice of key parameters has
+%permitted to get the results in Table~\ref{tab.cluster.3x33} which shows the
+%relative gains greater than 1 with a matrix size from 62 to 100 elements.
+
+\CER{En accord avec RC, on a pour le moment enlevé les tableaux 2 et 3 sachant que les résultats obtenus sont limites. De même, on a enlevé aussi les deux dernières colonnes du tableau I en attendant une meilleure performance et une meilleure precision}
+%\begin{table}[!t]
+%  \centering
+%  \caption{3 clusters, each with 33 nodes}
+%  \label{tab.cluster.3x33}
+%
+%  \begin{mytable}{6}
+%    \hline
+%    bandwidth 
+%    & 10       & 5        & 4        & 3        & 2        & 6 \\
+%    \hline
+%    latency
+%    & 0.01     & 0.02     & 0.02     & 0.02     & 0.02     & 0.02 \\
+%    \hline
+%    power
+%    & 1        & 1        & 1        & 1        & 1        & 1 \\
+%    \hline
+%    size
+%    & 62       & 100      & 100      & 100      & 100      & 171 \\
+%    \hline
+%    Prec/Eprec
+%    & \np{E-5} & \np{E-5} & \np{E-5} & \np{E-5} & \np{E-5} & \np{E-5} \\
+%    \hline
+%    \hline
+%    Relative gain
+%    & 1.003    & 1.01     & 1.08     & 1.19     & 1.28     & 1.01 \\
+%    \hline
+%  \end{mytable}
+%\end{table}
+
+%In a final step, results of an execution attempt to scale up the three clustered
+%configuration but increasing by two hundreds hosts has been recorded in
+%Table~\ref{tab.cluster.3x67}.
+
+%\begin{table}[!t]
+%  \centering
+%  \caption{3 clusters, each with 66 nodes}
+%  \label{tab.cluster.3x67}
+%
+%  \begin{mytable}{1}
+%    \hline
+%    bandwidth  & 1 \\
+%    \hline
+%    latency    & 0.02 \\
+%    \hline
+%    power      & 1 \\
+%    \hline
+%    size       & 62 \\
+%    \hline
+%    Prec/Eprec & \np{E-5} \\
+%    \hline
+%    \hline
+%    Relative gain    & 1.11 \\
+%    \hline
+%  \end{mytable}
+%\end{table}
 
-A priori, obtaining a speedup less than 1 would be difficult in a local area
-network configuration where the synchronous mode will take advantage on the rapid
-exchange of information on such high-speed links. Thus, the methodology adopted
-was to launch the application on clustered network. In this last configuration,
-degrading the inter-cluster network performance will \emph{penalize} the synchronous
-mode allowing to get a speedup lower than 1. This action simulates the case of
-clusters linked with long distance network like Internet.
+Note that the program was run with the following parameters:
 
-As a first step, the algorithm was run on a network consisting of two clusters
-containing fifty hosts each, totaling one hundred hosts. Various combinations of
-the above factors have providing the results shown in Table~\ref{tab.cluster.2x50} with a matrix size
-ranging from Nx = Ny = Nz = 62 to 171 elements or from $62^{3} = \np{238328}$ to
-$171^{3} = \np{5211000}$ entries.
+\paragraph*{SMPI parameters}
 
-Then we have changed the network configuration using three clusters containing
-respectively 33, 33 and 34 hosts, or again by on hundred hosts for all the
-clusters. In the same way as above, a judicious choice of key parameters has
-permitted to get the results in Table~\ref{tab.cluster.3x33} which shows the speedups less than 1 with
-a matrix size from 62 to 100 elements.
+~\\{}\AG{Donner un peu plus de précisions (plateforme en particulier).}
+\CER {Précisions ajoutées}
 
-In a final step, results of an execution attempt to scale up the three clustered
-configuration but increasing by two hundreds hosts has been recorded in Table~\ref{tab.cluster.3x67}.
+\begin{itemize}
+\item HOSTFILE: Text file containing the list of the processors units name. Here 100 hosts;
+\item PLATFORM: XML file description of the platform architecture : two clusters (cluster1 and cluster2) with the following characteristics :
 
-Note that the program was run with the following parameters:
+       - Processor unit power : 1.5 GFlops;
 
-\paragraph*{SMPI parameters}
+       - Intracluster network : bandwidth = 1,25 Gbits/s and latency = \np{E-5} ms;
 
-\begin{itemize}
-       \item HOSTFILE: Hosts file description.
-       \item PLATFORM: file description of the platform architecture : clusters (CPU power,
-\dots{}), intra cluster network description, inter cluster network (bandwidth bw,
-lat latency, \dots{}).
+       - Intercluster network : bandwidth = 5 Mbits/s and latency = 5.\np{E-3} ms;
 \end{itemize}
 
 
 \paragraph*{Arguments of the program}
 
 \begin{itemize}
-       \item Description of the cluster architecture;
-       \item Maximum number of internal and external iterations;
-       \item Internal and external precisions;
-       \item Matrix size NX, NY and NZ;
-       \item Matrix diagonal value = 6.0;
-       \item Execution Mode: synchronous or asynchronous.
+       \item Description of the cluster architecture matching the format <Number of cluster> <Number of hosts in cluster\_1> <Number of hosts in cluster\_2>;
+       \item Maximum number of iterations;
+       \item Precisions on the residual error;
+       \item Matrix size $N_x$, $N_y$ and $N_z$;
+       \item Matrix diagonal value: \np{1.0}   (See (3));
+       \item Matrix off-diagonal value: $-\frac{1}{6}$         (See(3));
+       \item Communication mode: Asynchronous.
 \end{itemize}
 
-\begin{table}
-  \centering
-  \caption{2 clusters X 50 nodes}
-  \label{tab.cluster.2x50}
-  \AG{Les images manquent dans le dépôt Git. Si ce sont vraiment des tableaux, utiliser un format vectoriel (eps ou pdf), et surtout pas de jpeg!}
-  \includegraphics[width=209pt]{img1.jpg}
-\end{table}
-
-\begin{table}
-  \centering
-  \caption{3 clusters X 33 nodes}
-  \label{tab.cluster.3x33}
-  \AG{Le fichier manque.}
-  \includegraphics[width=209pt]{img2.jpg}
-\end{table}
-
-\begin{table}
-  \centering
-  \caption{3 clusters X 67 nodes}
-  \label{tab.cluster.3x67}
-  \AG{Le fichier manque.}
-%  \includegraphics[width=160pt]{img3.jpg}
-  \includegraphics[scale=0.5]{img3.jpg}
-\end{table}
-
 \paragraph*{Interpretations and comments}
 
-After analyzing the outputs, generally, for the configuration with two or three
-clusters including one hundred hosts (Tables~\ref{tab.cluster.2x50} and~\ref{tab.cluster.3x33}), some combinations of the
-used parameters affecting the results have given a speedup less than 1, showing
-the effectiveness of the asynchronous performance compared to the synchronous
-mode.
-
-In the case of a two clusters configuration, Table~\ref{tab.cluster.2x50} shows that with a
-deterioration of inter cluster network set with \np[Mbits/s]{5} of bandwidth, a latency
-in order of a hundredth of a millisecond and a system power of one GFlops, an
-efficiency of about \np[\%]{40} in asynchronous mode is obtained for a matrix size of 62
-elements. It is noticed that the result remains stable even if we vary the
-external precision from \np{E-5} to \np{E-9}. By increasing the problem size up to 100
-elements, it was necessary to increase the CPU power of \np[\%]{50} to \np[GFlops]{1.5} for a
-convergence of the algorithm with the same order of asynchronous mode efficiency.
-Maintaining such a system power but this time, increasing network throughput
-inter cluster up to \np[Mbits/s]{50}, the result of efficiency of about \np[\%]{40} is
-obtained with high external  precision of \np{E-11} for a matrix size from 110 to 150
-side elements.
-
-For the 3 clusters architecture including a total of 100 hosts, Table~\ref{tab.cluster.3x33} shows
-that it was difficult to have a combination which gives an efficiency of
-asynchronous below \np[\%]{80}. Indeed, for a matrix size of 62 elements, equality
-between the performance of the two modes (synchronous and asynchronous) is
-achieved with an inter cluster of \np[Mbits/s]{10} and a latency of \np{E-1} ms. To
-challenge an efficiency by \np[\%]{78} with a matrix size of 100 points, it was
-necessary to degrade the inter cluster network bandwidth from 5 to 2 Mbit/s.
-
-A last attempt was made for a configuration of three clusters but more power
-with 200 nodes in total. The convergence with a speedup of \np[\%]{90} was obtained
-with a bandwidth of \np[Mbits/s]{1} as shown in Table~\ref{tab.cluster.3x67}.
-
+After analyzing the outputs, generally, for the two clusters including one hundred hosts configuration (Tables~\ref{tab.cluster.2x50}), some combinations of parameters affecting
+the results have given a relative gain more than 2.5, showing the effectiveness of the
+asynchronous performance compared to the synchronous mode.
+
+With these settings, Table~\ref{tab.cluster.2x50} shows
+that after a deterioration of inter cluster network with a bandwidth of \np[Mbit/s]{5} and a latency in order of one hundredth of millisecond and a processor power
+of one GFlops, an efficiency of about \np[\%]{40} is
+obtained in asynchronous mode for a matrix size of 62 elements. It is noticed that the result remains
+stable even we vary the residual error precision from \np{E-5} to \np{E-9}. By
+increasing the matrix size up to 100 elements, it was necessary to increase the
+CPU power of \np[\%]{50} to \np[GFlops]{1.5} to get the algorithm convergence and the same order of asynchronous mode efficiency.  Maintaining such processor power but increasing network throughput inter cluster up to
+\np[Mbit/s]{50}, the result of efficiency with a relative gain of 2.5\AG[]{2.5 ?} is obtained with
+high external precision of \np{E-11} for a matrix size from 110 to 150 side
+elements.
+
+%For the 3 clusters architecture including a total of 100 hosts,
+%Table~\ref{tab.cluster.3x33} shows that it was difficult to have a combination
+%which gives a relative gain of asynchronous mode more than 1.2. Indeed, for a
+%matrix size of 62 elements, equality between the performance of the two modes
+%(synchronous and asynchronous) is achieved with an inter cluster of
+%\np[Mbit/s]{10} and a latency of \np[ms]{E-1}. To challenge an efficiency greater than 1.2 with a matrix %size of 100 points, it was necessary to degrade the
+%inter cluster network bandwidth from 5 to \np[Mbit/s]{2}.
+\AG{Conclusion, on prend une plateforme pourrie pour avoir un bon ratio sync/async ???
+  Quelle est la perte de perfs en faisant ça ?}
+
+%A last attempt was made for a configuration of three clusters but more powerful
+%with 200 nodes in total. The convergence with a relative gain around 1.1 was
+%obtained with a bandwidth of \np[Mbit/s]{1} as shown in
+%Table~\ref{tab.cluster.3x67}.
+
+\RC{Est ce qu'on sait expliquer pourquoi il y a une telle différence entre les résultats avec 2 et 3 clusters... Avec 3 clusters, ils sont pas très bons... Je me demande s'il ne faut pas les enlever...}
+\RC{En fait je pense avoir la réponse à ma remarque... On voit avec les 2 clusters que le gain est d'autant plus grand qu'on choisit une bonne précision. Donc, plusieurs solutions, lancer rapidement un long test pour confirmer ca, ou enlever des tests... ou on ne change rien :-)}
+\LZK{Ma question est: le bandwidth et latency sont ceux inter-clusters ou pour les deux inter et intra cluster??}
+\CER{Définitivement, les paramètres réseaux variables ici se rapportent au réseau INTER cluster.}
 \section{Conclusion}
+The experimental results on executing a parallel iterative algorithm in 
+asynchronous mode on an environment simulating a large scale of virtual 
+computers organized with interconnected clusters have been presented. 
+Our work has demonstrated that using such a simulation tool allow us to 
+reach the following three objectives: 
+
+\begin{enumerate}
+\item To have a flexible configurable execution platform resolving the 
+hard exercise to access to very limited but so solicited physical 
+resources;
+\item to ensure the algorithm convergence with a reasonable time and
+iteration number ;
+\item and finally and more importantly, to find the correct combination 
+of the cluster and network specifications permitting to save time in 
+executing the algorithm in asynchronous mode.
+\end{enumerate}
+Our results have shown that in certain conditions, asynchronous mode is 
+speeder up to \np[\%]{40} than executing the algorithm in synchronous mode
+which is not negligible for solving complex practical problems with more 
+and more increasing size.
+
+ Several studies have already addressed the performance execution time of 
+this class of algorithm. The work presented in this paper has 
+demonstrated an original solution to optimize the use of a simulation 
+tool to run efficiently an iterative parallel algorithm in asynchronous 
+mode in a grid architecture. 
+
+\LZK{Perspectives???}
 
 \section*{Acknowledgment}
 
-
-The authors would like to thank\dots{}
-
+This work is partially funded by the Labex ACTION program (contract ANR-11-LABX-01-01).
+\todo[inline]{The authors would like to thank\dots{}}
 
 % trigger a \newpage just before the given reference
 % number - used to balance the columns on the last page
 % adjust value as needed - may need to be readjusted if
 % the document is modified later
 \bibliographystyle{IEEEtran}
-\bibliography{hpccBib}
+\bibliography{IEEEabrv,hpccBib}
+
+
 
 \end{document}
 
@@ -371,3 +743,12 @@ The authors would like to thank\dots{}
 %%% fill-column: 80
 %%% ispell-local-dictionary: "american"
 %%% End:
+
+% LocalWords:  Ramamonjisoa Laiymani Arnaud Giersch Ziane Khodja Raphaël Femto
+% LocalWords:  Université Franche Comté IUT Montbéliard Maréchal Juin Inria Sud
+% LocalWords:  Ouest Vieille Talence cedex scalability experimentations HPC MPI
+% LocalWords:  Parallelization AIAC GMRES multi SMPI SISC SIAC SimDAG DAGs Lua
+% LocalWords:  Fortran GFlops priori Mbit de du fcomte multisplitting scalable
+% LocalWords:  SimGrid Belfort parallelize Labex ANR LABX IEEEabrv hpccBib
+% LocalWords:  intra durations nonsingular Waitall discretization discretized
+% LocalWords:  InnerSolver Isend Irecv