]> AND Private Git Repository - hpcc2014.git/blobdiff - hpcc.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
petites modifs
[hpcc2014.git] / hpcc.tex
index 0dccef3cdc51d77190aaa2a5a1e8d455fd29d9cd..abcf399755d8c18c50ffc6a2164fa02ca32aa2c0 100644 (file)
--- a/hpcc.tex
+++ b/hpcc.tex
 
 \begin{document}
 
-\title{Simulation of Asynchronous Iterative Numerical Algorithms Using SimGrid}
+\title{Simulation of Asynchronous Iterative Algorithms Using SimGrid}
 
 \author{%
   \IEEEauthorblockN{%
     Charles Emile Ramamonjisoa\IEEEauthorrefmark{1},
+    Lilia Ziane Khodja\IEEEauthorrefmark{2},
     David Laiymani\IEEEauthorrefmark{1},
-    Arnaud Giersch\IEEEauthorrefmark{1},
-    Lilia Ziane Khodja\IEEEauthorrefmark{2} and
+    Arnaud Giersch\IEEEauthorrefmark{1} and
     Raphaël Couturier\IEEEauthorrefmark{1}
   }
   \IEEEauthorblockA{\IEEEauthorrefmark{1}%
 
 \maketitle
 
-\RC{Ordre des auteurs pas définitif.}
 \begin{abstract}
-\AG{L'abstract est AMHA incompréhensible et ne donne pas envie de lire la suite.}
-In recent years, the scalability of large-scale implementation in a 
-distributed environment of algorithms becoming more and more complex has 
-always been hampered by the limits of physical computing resources 
-capacity. One solution is to run the program in a virtual environment 
-simulating a real interconnected computers architecture. The results are 
-convincing and useful solutions are obtained with far fewer resources 
-than in a real platform. However, challenges remain for the convergence 
-and efficiency of a class of algorithms that concern us here, namely 
-numerical parallel iterative algorithms executed in asynchronous mode, 
-especially in a large scale level. Actually, such algorithm requires a 
-balance and a compromise between computation and communication time 
-during the execution. Two important factors determine the success of the 
-experimentation: the convergence of the iterative algorithm on a large 
-scale and the execution time reduction in asynchronous mode. Once again, 
-from the current work, a simulated environment like SimGrid provides
-accurate results which are difficult or even impossible to obtain in a 
-physical platform by exploiting the flexibility of the simulator on the 
-computing units clusters and the network structure design. Our 
-experimental outputs showed a saving of up to \np[\%]{40} for the algorithm
-execution time in asynchronous mode compared to the synchronous one with 
-a residual precision up to \np{E-11}. Such successful results open
-perspectives on experimentations for running the algorithm on a 
-simulated large scale growing environment and with larger problem size. 
-
-\LZK{Long\ldots}
+
+Synchronous  iterative  algorithms  are  often less  scalable  than  asynchronous
+iterative  ones.  Performing  large  scale experiments  with  different kind  of
+network parameters is not easy  because with supercomputers such parameters are
+fixed. So one  solution consists in using simulations first  in order to analyze
+what parameters  could influence or not  the behaviors of an  algorithm. In this
+paper, we show  that it is interesting to use SimGrid  to simulate the behaviors
+of asynchronous  iterative algorithms. For that,  we compare the  behaviour of a
+synchronous  GMRES  algorithm  with  an  asynchronous  multisplitting  one  with
+simulations  in  which we  choose  some parameters.   Both  codes  are real  MPI
+codes. Experiments allow us to see when the multisplitting algorithm can be more
+efficient than the GMRES one to solve a 3D Poisson problem.
+
 
 % no keywords for IEEE conferences
 % Keywords: Algorithm distributed iterative asynchronous simulation SimGrid
@@ -111,7 +97,7 @@ problems raised by  researchers on various scientific disciplines but also by in
 increasing complexity of these requested  applications combined with a continuous increase of their sizes lead to  write
 distributed and parallel algorithms requiring significant hardware  resources (grid computing, clusters, broadband
 network, etc.) but also a non-negligible CPU execution time. We consider in this paper a class of highly efficient
-parallel algorithms called \emph{numerical iterative algorithms} executed in a distributed environment. As their name
+parallel algorithms called \emph{iterative algorithms} executed in a distributed environment. As their name
 suggests, these algorithms solve a given problem by successive iterations ($X_{n +1} = f(X_{n})$) from an initial value
 $X_{0}$ to find an approximate value $X^*$ of the solution with a very low residual error. Several well-known methods
 demonstrate the convergence of these algorithms~\cite{BT89,Bahi07}.
@@ -127,34 +113,34 @@ at that time. Even if the number of iterations required before the convergence i
 synchronous case, AIAC algorithms can significantly reduce overall execution times by suppressing idle times due to
 synchronizations especially in a grid computing context (see~\cite{Bahi07} for more details).
 
-Parallel numerical applications (synchronous or asynchronous) may have different
-configuration and deployment requirements.  Quantifying their resource
-allocation policies and application scheduling algorithms in grid computing
-environments under varying load, CPU power and network speeds is very costly,
-very labor intensive and very time
-consuming~\cite{Calheiros:2011:CTM:1951445.1951450}.  The case of AIAC
-algorithms is even more problematic since they are very sensible to the
+Parallel   (synchronous  or  asynchronous)   applications  may   have  different
+configuration   and  deployment   requirements.    Quantifying  their   resource
+allocation  policies and  application  scheduling algorithms  in grid  computing
+environments under  varying load, CPU power  and network speeds  is very costly,
+very          labor           intensive          and          very          time
+consuming~\cite{Calheiros:2011:CTM:1951445.1951450}.     The   case    of   AIAC
+algorithms  is  even  more problematic  since  they  are  very sensible  to  the
 execution environment context. For instance, variations in the network bandwidth
-(intra and inter-clusters), in the number and the power of nodes, in the number
-of clusters\dots{} can lead to very different number of iterations and so to
-very different execution times. Then, it appears that the use of simulation
-tools to explore various platform scenarios and to run large numbers of
-experiments quickly can be very promising. In this way, the use of a simulation
-environment to execute parallel iterative algorithms found some interests in
-reducing the highly cost of access to computing resources: (1) for the
-applications development life cycle and in code debugging (2) and in production
-to get results in a reasonable execution time with a simulated infrastructure
-not accessible with physical resources. Indeed, the launch of distributed
-iterative asynchronous algorithms to solve a given problem on a large-scale
-simulated environment challenges to find optimal configurations giving the best
+(intra and inter-clusters), in the number  and the power of nodes, in the number
+of clusters\dots{}  can lead to  very different number  of iterations and  so to
+very  different execution times.  Then, it  appears that  the use  of simulation
+tools  to  explore  various platform  scenarios  and  to  run large  numbers  of
+experiments quickly can be very promising.  In this way, the use of a simulation
+environment  to execute parallel  iterative algorithms  found some  interests in
+reducing  the  highly  cost  of  access  to computing  resources:  (1)  for  the
+applications development life cycle and  in code debugging (2) and in production
+to get  results in a reasonable  execution time with  a simulated infrastructure
+not  accessible  with physical  resources.  Indeed,  the  launch of  distributed
+iterative  asynchronous algorithms  to solve  a given  problem on  a large-scale
+simulated environment challenges to  find optimal configurations giving the best
 results with a lowest residual error and in the best of execution time.
 
 To our knowledge, there is no existing work on the large-scale simulation of a
-real AIAC application. The aim of this paper is twofold. First we give a first
+real AIAC application. There are {\bf two contributions} in this paper. First we give a first
 approach of the simulation of AIAC algorithms using a simulation tool (i.e. the
-SimGrid toolkit~\cite{SimGrid}). Second, we confirm the effectiveness of
-asynchronous mode algorithms by comparing their performance with the synchronous
-mode. More precisely, we had implemented a program for solving large
+SimGrid toolkit~\cite{SimGrid}). Second, we confirm the effectiveness of the
+asynchronous multisplitting algorithm by comparing its performance with the synchronous
+GMRES. More precisely, we had implemented a program for solving large
 linear system of equations by numerical method GMRES (Generalized
 Minimal Residual) \cite{ref1}. We show, that with minor modifications of the
 initial MPI code, the SimGrid toolkit allows us to perform a test campaign of a