the local convergence on each cluster $\ell$ is detected when the following
condition is satisfied
\begin{equation*}
- (k\leq \MI) \text{ or } (\|X_\ell^k - X_\ell^{k+1}\|_{\infty}\leq\epsilon)
+ (k=\MI) \text{ or } (\|X_\ell^k - X_\ell^{k+1}\|_{\infty}\leq\epsilon)
\end{equation*}
where $\MI$ is the maximum number of outer iterations and $\epsilon$ is the
tolerance threshold of the error computed between two successive local solution