]> AND Private Git Repository - hpcc2014.git/blobdiff - hpcc.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
24-04-2014bbb
[hpcc2014.git] / hpcc.tex
index 29eca38179aabe085bd84945c74473f1a1c1a17c..e1d916ee61fbab0e1799d580e208763589d3c783 100644 (file)
--- a/hpcc.tex
+++ b/hpcc.tex
@@ -151,8 +151,8 @@ approach of the simulation of AIAC algorithms using a simulation tool (i.e. the
 SimGrid toolkit~\cite{SimGrid}). Second, we confirm the effectiveness of
 asynchronous mode algorithms by comparing their performance with the synchronous
 mode. More precisely, we had implemented a program for solving large
 SimGrid toolkit~\cite{SimGrid}). Second, we confirm the effectiveness of
 asynchronous mode algorithms by comparing their performance with the synchronous
 mode. More precisely, we had implemented a program for solving large
-non-symmetric linear system of equations by numerical method GMRES (Generalized
-Minimal Residual) []\AG[]{[]?}\LZK[]{\cite{ref1}}.\LZK{Problème traité dans le papier est symétrique ou asymétrique? (Poisson 3D symétrique?)} We show, that with minor modifications of the
+linear system of equations by numerical method GMRES (Generalized
+Minimal Residual) \cite{ref1}. We show, that with minor modifications of the
 initial MPI code, the SimGrid toolkit allows us to perform a test campaign of a
 real AIAC application on different computing architectures. The simulated
 results we obtained are in line with real results exposed in ??\AG[]{??}.
 initial MPI code, the SimGrid toolkit allows us to perform a test campaign of a
 real AIAC application on different computing architectures. The simulated
 results we obtained are in line with real results exposed in ??\AG[]{??}.
@@ -339,9 +339,7 @@ where $\MI$ is the maximum number of outer iterations and $\epsilon$ is the tole
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 We did not encounter major blocking problems when adapting the multisplitting algorithm previously described to a simulation environment like SimGrid unless some code 
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 We did not encounter major blocking problems when adapting the multisplitting algorithm previously described to a simulation environment like SimGrid unless some code 
-debugging. Indeed, apart from the review of the program sequence for asynchronous exchanges between the six neighbors of each point (left,right,front,behind,top,down) in a cubic partitionned submatrix within a cluster or between clusters, \CER{J'ai rajouté quelques précisions mais serait-il nécessaire de décrire a ce niveau la discrétisation 3D ?}
-\LZK{Non ce n'est pas nécessaire. A ce niveau, on décrit l'algorithme général de multisplitting. Donc, je pense qu'il est préférable de ne pas préciser le schéma de communication qui peut changer selon le type de problème. \\ {\bf Par exemple: Indeed, apart from the review of the program sequence for asynchronous exchanges between processors within a cluster or between clusters}}
-the algorithm was executed successfully with SMPI and provided identical outputs as those obtained with direct execution under MPI. In synchronous 
+debugging. Indeed, apart from the review of the program sequence for asynchronous exchanges between processors within a cluster or between clusters, the algorithm was executed successfully with SMPI and provided identical outputs as those obtained with direct execution under MPI. In synchronous 
 mode, the execution of the program raised no particular issue but in asynchronous mode, the review of the sequence of MPI\_Isend, MPI\_Irecv and MPI\_Waitall instructions
 and with the addition of the primitive MPI\_Test was needed to avoid a memory fault due to an infinite loop resulting from the non-convergence of the algorithm.
 \CER{On voulait en fait montrer la simplicité de l'adaptation de l'algo a SimGrid. Les problèmes rencontrés décrits dans ce paragraphe concerne surtout le mode async}\LZK{OK. J'aurais préféré avoir un peu plus de détails sur l'adaptation de la version async}
 mode, the execution of the program raised no particular issue but in asynchronous mode, the review of the sequence of MPI\_Isend, MPI\_Irecv and MPI\_Waitall instructions
 and with the addition of the primitive MPI\_Test was needed to avoid a memory fault due to an infinite loop resulting from the non-convergence of the algorithm.
 \CER{On voulait en fait montrer la simplicité de l'adaptation de l'algo a SimGrid. Les problèmes rencontrés décrits dans ce paragraphe concerne surtout le mode async}\LZK{OK. J'aurais préféré avoir un peu plus de détails sur l'adaptation de la version async}
@@ -405,7 +403,7 @@ u^{k+1}(x,y,z)= & u^k(x,y,z) - \frac{1}{6}\times\\
 \end{equation} 
 where the iteration matrix $A$ of size $N_x\times N_y\times N_z$ of the discretized linear system is sparse, symmetric and positive definite. 
 
 \end{equation} 
 where the iteration matrix $A$ of size $N_x\times N_y\times N_z$ of the discretized linear system is sparse, symmetric and positive definite. 
 
-The parallel solving of the 3D Poisson problem with our multisplitting method requires a data partitioning of the problem between clusters and between processors within a cluster. We have chosen the 3D partitioning instead of the row-by-row partitioning in order to reduce the data exchanges at sub-domain boundaries. Figure~\ref{fig:4.2} shows an example of the data partitioning of the 3D Poisson problem between two clusters of processors, where each sub-problem is assigned to a processor. In this context, a processor has at most six neighbors within a cluster of in distant clusters with which it shares data at sub-domain boundaries. 
+The parallel solving of the 3D Poisson problem with our multisplitting method requires a data partitioning of the problem between clusters and between processors within a cluster. We have chosen the 3D partitioning instead of the row-by-row partitioning in order to reduce the data exchanges at sub-domain boundaries. Figure~\ref{fig:4.2} shows an example of the data partitioning of the 3D Poisson problem between two clusters of processors, where each sub-problem is assigned to a processor. In this context, a processor has at most six neighbors within a cluster or in distant clusters with which it shares data at sub-domain boundaries. 
 
 \begin{figure}[!t]
 \centering
 
 \begin{figure}[!t]
 \centering