\usepackage[textsize=footnotesize]{todonotes}
\newcommand{\AG}[2][inline]{%
\todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}\xspace}
-\newcommand{\RC}[2][inline]{%
- \todo[color=red!10,#1]{\sffamily\textbf{RC:} #2}\xspace}
+\newcommand{\DL}[2][inline]{%
+ \todo[color=yellow!50,#1]{\sffamily\textbf{DL:} #2}\xspace}
\newcommand{\LZK}[2][inline]{%
\todo[color=blue!10,#1]{\sffamily\textbf{LZK:} #2}\xspace}
+\newcommand{\RC}[2][inline]{%
+ \todo[color=red!10,#1]{\sffamily\textbf{RC:} #2}\xspace}
\algnewcommand\algorithmicinput{\textbf{Input:}}
\algnewcommand\Input{\item[\algorithmicinput]}
accurate results which are difficult or even impossible to obtain in a
physical platform by exploiting the flexibility of the simulator on the
computing units clusters and the network structure design. Our
-experimental outputs showed a saving of up to 40 \% for the algorithm
+experimental outputs showed a saving of up to \np[\%]{40} for the algorithm
execution time in asynchronous mode compared to the synchronous one with
-a residual precision up to E-11. Such successful results open
+a residual precision up to \np{E-11}. Such successful results open
perspectives on experimentations for running the algorithm on a
simulated large scale growing environment and with larger problem size.
-Keywords : Algorithm distributed iterative asynchronous simulation
-simgrid
-
+% no keywords for IEEE conferences
+% Keywords: Algorithm distributed iterative asynchronous simulation simgrid
\end{abstract}
\section{Introduction}
\section{The asynchronous iteration model}
-Décrire le modèle asynchrone. Je m'en charge (DL)
+\DL{Décrire le modèle asynchrone. Je m'en charge}
\section{SimGrid}
-Décrire SimGrid~\cite{casanova+legrand+quinson.2008.simgrid} (Arnaud)
-
-
-
-
-
+\AG{Décrire SimGrid~\cite{casanova+legrand+quinson.2008.simgrid} (Arnaud)}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\centering
\caption{2 clusters X 50 nodes}
\label{tab.cluster.2x50}
- \AG{Les images manquent dans le dépôt Git. Si ce sont vraiment des tableaux, utiliser un format vectoriel (eps ou pdf), et surtout pas de jpeg!}
+ \AG{Ces tableaux (\ref{tab.cluster.2x50}, \ref{tab.cluster.3x33} et
+ \ref{tab.cluster.3x67}) sont affreux. Utiliser un format vectoriel (eps ou
+ pdf) ou, mieux, les réécrire en \LaTeX{}. Réécrire les légendes proprement
+ également (\texttt{\textbackslash{}times} au lieu de \texttt{X} par ex.)}
\includegraphics[width=209pt]{img1.jpg}
\end{table}
\centering
\caption{3 clusters X 33 nodes}
\label{tab.cluster.3x33}
- \AG{Le fichier manque.}
+ \AG{Refaire le tableau.}
\includegraphics[width=209pt]{img2.jpg}
\end{table}
\centering
\caption{3 clusters X 67 nodes}
\label{tab.cluster.3x67}
- \AG{Le fichier manque.}
+ \AG{Refaire le tableau.}
% \includegraphics[width=160pt]{img3.jpg}
\includegraphics[scale=0.5]{img3.jpg}
\end{table}
that it was difficult to have a combination which gives an efficiency of
asynchronous below \np[\%]{80}. Indeed, for a matrix size of 62 elements, equality
between the performance of the two modes (synchronous and asynchronous) is
-achieved with an inter cluster of \np[Mbits/s]{10} and a latency of \np{E-1} ms. To
+achieved with an inter cluster of \np[Mbits/s]{10} and a latency of \np[ms]{E-1}. To
challenge an efficiency by \np[\%]{78} with a matrix size of 100 points, it was
necessary to degrade the inter cluster network bandwidth from 5 to 2 Mbit/s.
\setcounter{numberedCntD}{\theenumi}
\end{enumerate}
Our results have shown that in certain conditions, asynchronous mode is
-speeder up to 40 \% than executing the algorithm in synchronous mode
+speeder up to \np[\%]{40} than executing the algorithm in synchronous mode
which is not negligible for solving complex practical problems with more
and more increasing size.