\LZK{Description du processus d'adaptation de l'algo multisplitting à SimGrid}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
+We did not encounter major blocking problems when adapting the multisplitting algorithm previously described to a simulation environment like SIMGRID unless some code
+debugging. Indeed, apart from the review of the program sequence for asynchronous exchanges between the six neighbors of each point in a submatrix within a cluster or
+between clusters, the algorithm was executed successfully with SMPI and provided identical outputs as those obtained with direct execution under MPI. In synchronous
+mode, the execution of the program raised no particular issue but in asynchronous mode, the review of the sequence of MPI\_Isend, MPI\_Irecv and MPI\_waitall instructions
+and with the addition of the primitive MPI\_Test was needed to avoid a memory fault due to an infinite loop resulting from the non- convergence of the algorithm. Note here that the use of SMPI
+functions optimizer for memory footprint and CPU usage is not recommended knowing that one wants to get real results by simulation.
+As mentioned, upon this adaptation, the algorithm is executed as in the real life in the simulated environment after the following minor changes. First, all declared
+global variables have been moved to local variables for each subroutine. In fact, global variables generate side effects arising from the concurrent access of
+shared memory used by threads simulating each computing units in the Simgrid architecture. Second, the alignment of certain types of variables such as "long int" had
+also to be reviewed. Finally, some compilation errors on MPI\_waitall and MPI\_Finalise primitives have been fixed with the latest version of Simgrid.
+In total, the initial MPI program running on the simulation environment SMPI gave after a very simple adaptation the same results as those obtained in a real
+environment. We have tested in synchronous mode with a simulated platform starting from a modest 2 or 3 clusters grid to a larger configuration like simulating
+Grid5000 with more than 1500 hosts with 5000 cores~\cite{bolze2006grid}. Once the code debugging and adaptation were complete, the next section shows our methodology and experimental
+results.
Our work has demonstrated that using such a simulation tool allow us to
reach the following three objectives:
-\newcounter{numberedCntD}
\begin{enumerate}
\item To have a flexible configurable execution platform resolving the
hard exercise to access to very limited but so solicited physical
\item and finally and more importantly, to find the correct combination
of the cluster and network specifications permitting to save time in
executing the algorithm in asynchronous mode.
-\setcounter{numberedCntD}{\theenumi}
\end{enumerate}
Our results have shown that in certain conditions, asynchronous mode is
speeder up to \np[\%]{40} than executing the algorithm in synchronous mode