+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+We did not encounter major blocking problems when adapting the multisplitting algorithm previously described to a simulation environment like SimGrid unless some code
+debugging. Indeed, apart from the review of the program sequence for asynchronous exchanges between processors within a cluster or between clusters, the algorithm was executed successfully with SMPI and provided identical outputs as those obtained with direct execution under MPI. In synchronous
+mode, the execution of the program raised no particular issue but in asynchronous mode, the review of the sequence of MPI\_Isend, MPI\_Irecv and MPI\_Waitall instructions
+and with the addition of the primitive MPI\_Test was needed to avoid a memory fault due to an infinite loop resulting from the non-convergence of the algorithm.
+\CER{On voulait en fait montrer la simplicité de l'adaptation de l'algo a SimGrid. Les problèmes rencontrés décrits dans ce paragraphe concerne surtout le mode async}\LZK{OK. J'aurais préféré avoir un peu plus de détails sur l'adaptation de la version async}
+\CER{Le problème majeur sur l'adaptation MPI vers SMPI pour la partie asynchrone de l'algorithme a été le plantage en SMPI de Waitall après un Isend et Irecv. J'avais proposé un workaround en utilisant un MPI\_wait séparé pour chaque échange a la place d'un waitall unique pour TOUTES les échanges, une instruction qui semble bien fonctionner en MPI. Ce workaround aussi fonctionne bien. Mais après, tu as modifié le programme avec l'ajout d'un MPI\_Test, au niveau de la routine de détection de la convergence et du coup, l'échange global avec waitall a aussi fonctionné.}
+Note here that the use of SMPI functions optimizer for memory footprint and CPU usage is not recommended knowing that one wants to get real results by simulation.
+As mentioned, upon this adaptation, the algorithm is executed as in the real life in the simulated environment after the following minor changes. First, the scope of all declared
+global variables have been moved to local to subroutine. Indeed, global variables generate side effects arising from the concurrent access of
+shared memory used by threads simulating each computing unit in the SimGrid architecture.
+Second, some compilation errors on MPI\_Waitall and MPI\_Finalize primitives have been fixed with the latest version of SimGrid.
+In total, the initial MPI program running on the simulation environment SMPI gave after a very simple adaptation the same results as those obtained in a real
+environment. We have successfully executed the code in synchronous mode using parallel GMRES algorithm compared with our multisplitting algorithm in asynchronous mode after few modifications.
+
+
+
+\section{Simulation results}
+
+When the \textit{real} application runs in the simulation environment and produces the expected results, varying the input
+parameters and the program arguments allows us to compare outputs from the code execution. We have noticed from this
+study that the results depend on the following parameters:
+\begin{itemize}
+\item At the network level, we found that the most critical values are the
+ bandwidth and the network latency.
+\item Hosts processors power (GFlops) can also influence on the results.
+\item Finally, when submitting job batches for execution, the arguments values
+ passed to the program like the maximum number of iterations or the precision are critical. They allow us to ensure not only the convergence of the
+ algorithm but also to get the main objective in getting an execution time in asynchronous communication less than in
+ synchronous mode. The ratio between the execution time of synchronous
+ compared to the asynchronous mode ($t_\text{sync} / t_\text{async}$) is defined as the \emph{relative gain}. So,
+ our objective running the algorithm in SimGrid is to obtain a relative gain
+ greater than 1.
+\end{itemize}
+
+A priori, obtaining a relative gain greater than 1 would be difficult in a local
+area network configuration where the synchronous mode will take advantage on the
+rapid exchange of information on such high-speed links. Thus, the methodology
+adopted was to launch the application on a clustered network. In this
+configuration, degrading the inter-cluster network performance will penalize the
+synchronous mode allowing to get a relative gain greater than 1. This action
+simulates the case of distant clusters linked with long distance network as in grid computing context.
+
+
+% As a first step,
+The algorithm was run on a two clusters based network with 50 hosts each, totaling 100 hosts. Various combinations of the above
+factors have provided the results shown in Table~\ref{tab.cluster.2x50}. The algorithm convergence with a 3D
+matrix size ranging from $N_x = N_y = N_z = \text{62}$ to 150 elements (that is from
+$\text{62}^\text{3} = \text{\np{238328}}$ to $\text{150}^\text{3} =
+\text{\np{3375000}}$ entries), is obtained in asynchronous in average 2.5 times speeder than the synchronous mode.
+\AG{Expliquer comment lire les tableaux.}
+\CER{J'ai reformulé la phrase par la lecture du tableau. Plus de détails seront lus dans la partie Interprétations et commentaires}