]> AND Private Git Repository - hpcc2014.git/blobdiff - hpcc.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Merge branch 'master' of ssh://info.iut-bm.univ-fcomte.fr/hpcc2014
[hpcc2014.git] / hpcc.tex
index dc83bb40c34303c941bebaa25c0f52c6ed266765..6e262b194a8a4ff0f5a98518892b14e5c041fff7 100644 (file)
--- a/hpcc.tex
+++ b/hpcc.tex
@@ -1,4 +1,3 @@
-
 \documentclass[conference]{IEEEtran}
 
 \usepackage[T1]{fontenc}
@@ -163,7 +162,8 @@ network  platforms  are   the  bandwidth  and  the  latency   of  inter  cluster
 network. Parameters on the cluster's architecture are the number of machines and
 the  computation power  of a  machine.  Simulations show  that the  asynchronous
 multisplitting algorithm  can solve the  3D Poisson problem  approximately twice
-faster than GMRES with two distant clusters.
+faster than GMRES with two distant clusters. In this way, we present an original solution to optimize the use of a simulation 
+tool to run efficiently an  asynchronous iterative parallel algorithm in a grid architecture
 
 
 
@@ -383,8 +383,8 @@ exchanged by message passing using MPI non-blocking communication routines.
 
 \begin{figure}[!t]
 \centering
-  \includegraphics[width=60mm,keepaspectratio]{clustering2}
-\caption{Example of two distant clusters of processors.}
+  \includegraphics[width=60mm,keepaspectratio]{clustering}
+\caption{Example of three distant clusters of processors.}
 \label{fig:4.1}
 \end{figure}
 
@@ -422,7 +422,7 @@ u =0 \text{~on~} \Gamma =\partial\Omega
 \right.
 \label{eq:02}
 \end{equation}
-where $\nabla^2$ is the Laplace operator, $f$ and $u$ are real-valued functions, and $\Omega=[0,1]^3$. The spatial discretization with a finite difference scheme reduces problem~(\ref{eq:02}) to a system of sparse linear equations. Our multisplitting method solves the 3D Poisson problem using a seven point stencil whose the general expression could be written as
+where $\nabla^2$ is the Laplace operator, $f$ and $u$ are real-valued functions, and $\Omega=[0,1]^3$. The spatial discretization with a finite differences scheme reduces problem~(\ref{eq:02}) to a system of sparse linear equations. Our multisplitting method solves the 3D Poisson problem using a seven point stencil whose the general expression could be written as
 \begin{equation}
 \begin{array}{l}
 u(x-1,y,z) + u(x,y-1,z) + u(x,y,z-1)\\+u(x+1,y,z)+u(x,y+1,z)+u(x,y,z+1) \\ -6u(x,y,z)=h^2f(x,y,z),
@@ -450,7 +450,7 @@ The parallel solving of the 3D Poisson problem with our multisplitting method re
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 We did not encounter major blocking problems when adapting the multisplitting algorithm previously described to a simulation environment like SimGrid unless some code 
-debugging. Indeed, apart from the review of the program sequence for asynchronous exchanges between processors within a cluster or between clusters, the algorithm was executed successfully with SMPI and provided identical outputs as those obtained with direct execution under MPI. For the synchronous GMRES method, the execution of the program raised no particular issue but in the asynchronous multisplitting method , the review of the sequence of \texttt{MPI\_Isend, MPI\_Irecv} and \texttt{MPI\_Waitall} instructions
+debugging. Indeed, apart from the review of the program sequence for asynchronous exchanges between processors within a cluster or between clusters, the algorithm was executed successfully with SMPI and provided identical outputs as those obtained with direct execution under MPI. For the synchronous GMRES method, the execution of the program raised no particular issue but in the asynchronous multisplitting method, the review of the sequence of \texttt{MPI\_Isend, MPI\_Irecv} and \texttt{MPI\_Waitall} instructions
 and with the addition of the primitive \texttt{MPI\_Test} was needed to avoid a memory fault due to an infinite loop resulting from the non-convergence of the algorithm.
 %\CER{On voulait en fait montrer la simplicité de l'adaptation de l'algo a SimGrid. Les problèmes rencontrés décrits dans ce paragraphe concerne surtout le mode async}\LZK{OK. J'aurais préféré avoir un peu plus de détails sur l'adaptation de la version async} 
 %\CER{Le problème majeur sur l'adaptation MPI vers SMPI pour la partie asynchrone de l'algorithme a été le plantage en SMPI de Waitall après un Isend et Irecv. J'avais proposé un workaround en utilisant un MPI\_wait séparé pour chaque échange a la place d'un waitall unique pour TOUTES les échanges, une instruction qui semble bien fonctionner en MPI. Ce workaround aussi fonctionne bien. Mais après, tu as modifié le programme avec l'ajout d'un MPI\_Test, au niveau de la routine de détection de la convergence et du coup, l'échange global avec waitall a aussi fonctionné.}
@@ -493,7 +493,7 @@ simulates the case of distant clusters linked with long distance network as in g
 
 
 Both codes were simulated on a two clusters based network with 50 hosts each, totaling 100 hosts. Various combinations of the above
-factors have provided the results shown in Table~\ref{tab.cluster.2x50}. The problem size of the 3D Poisson problem  ranges from $N_x = N_y = N_z = \text{62}$ to 150 elements (that is from
+factors have provided the results shown in Table~\ref{tab.cluster.2x50}. The problem size of the 3D Poisson problem  ranges from $N=N_x = N_y = N_z = \text{62}$ to 150 elements (that is from
 $\text{62}^\text{3} = \text{\np{238328}}$ to $\text{150}^\text{3} =
 \text{\np{3375000}}$ entries). With the asynchronous multisplitting algorithm the simulated execution time is in average 2.5 times faster than with the synchronous GMRES one. 
 %\AG{Expliquer comment lire les tableaux.}
@@ -509,7 +509,7 @@ $\text{62}^\text{3} = \text{\np{238328}}$ to $\text{150}^\text{3} =
 \begin{table}[!t]
   \centering
   \caption{Relative gain  of the multisplitting algorithm compared  to GMRES for
-    different configurations with 2 clusters, each one composed of 50 nodes.}
+    different configurations with 2 clusters, each one composed of 50 nodes. Latency = $20$ms}
   \label{tab.cluster.2x50}
 
   \begin{mytable}{5}
@@ -517,14 +517,14 @@ $\text{62}^\text{3} = \text{\np{238328}}$ to $\text{150}^\text{3} =
     bandwidth (Mbit/s)
     & 5         & 5         & 5         & 5         & 5         \\
     \hline
-    latency (ms)
-    & 20      &  20      & 20      & 20      & 20      \\
-    \hline
+  %  latency (ms)
+   % & 20      &  20      & 20      & 20      & 20      \\
+    %\hline
     power (GFlops)
     & 1         & 1         & 1         & 1.5       & 1.5       \\
     \hline
-    size $(n^3)$
-    & 62        & 62        & 62        & 100       & 100       \\
+    size $(N)$
+    & $62^3$        & $62^3$        & $62^3$        & $100^3$       & $100^3$       \\
     \hline
     Precision
     & \np{E-5}  & \np{E-8}  & \np{E-9}  & \np{E-11} & \np{E-11} \\
@@ -542,14 +542,14 @@ $\text{62}^\text{3} = \text{\np{238328}}$ to $\text{150}^\text{3} =
     bandwidth (Mbit/s)
     & 50        & 50        & 50        & 50        & 50 \\ %       & 10        & 10 \\
     \hline
-    latency (ms)
-    & 20      & 20      & 20      & 20      & 20 \\ %      & 0.03      & 0.01 \\
-    \hline
+    %latency (ms)
+    %& 20      & 20      & 20      & 20      & 20 \\ %      & 0.03      & 0.01 \\
+    %\hline
     Power (GFlops)
     & 1.5       & 1.5       & 1.5       & 1.5       & 1.5 \\ %      & 1         & 1.5 \\
     \hline
-    size $(n^3)$
-    & 110       & 120       & 130       & 140       & 150  \\ %     & 171       & 171 \\
+    size $(N)$
+    & $110^3$       & $120^3$       & $130^3$       & $140^3$       & $150^3$  \\ %     & 171       & 171 \\
     \hline
     Precision
     & \np{E-11} & \np{E-11} & \np{E-11} & \np{E-11} & \np{E-11} \\ % & \np{E-5}  & \np{E-5} \\
@@ -561,7 +561,7 @@ $\text{62}^\text{3} = \text{\np{238328}}$ to $\text{150}^\text{3} =
   \end{mytable}
 \end{table}
   
-\RC{Du coup la latence est toujours la même, pourquoi la mettre dans la table?}
+%\RC{Du coup la latence est toujours la même, pourquoi la mettre dans la table?}
 
 %Then we have changed the network configuration using three clusters containing
 %respectively 33, 33 and 34 hosts, or again by on hundred hosts for all the
@@ -647,11 +647,11 @@ Note that the program was run with the following parameters:
 \begin{itemize}
 \item Description of the cluster architecture matching the format <Number of
   clusters> <Number of hosts in cluster1> <Number of hosts in cluster2>;
-\item Maximum number of iterations;
-\item Precisions on the residual error;
+\item Maximum numbers of outer and inner iterations;
+\item Outer and inner precisions on the residual error;
 \item Matrix size $N_x$, $N_y$ and $N_z$;
-\item Matrix diagonal value: $6$ (See Equation~(\ref{eq:03}));
-\item Matrix off-diagonal value: $-1$;
+\item Matrix diagonal value: $6$ (see Equation~(\ref{eq:03}));
+\item Matrix off-diagonal values: $-1$;
 \item Communication mode: asynchronous.
 \end{itemize}
 
@@ -662,14 +662,14 @@ the results have given a relative gain more than 2.5, showing the effectiveness
 asynchronous multisplitting  compared to GMRES with two distant clusters.
 
 With these settings, Table~\ref{tab.cluster.2x50} shows
-that after setting the bandwidth of the  inter cluster network to  \np[Mbit/s]{5} and a latency in order of one hundredth of millisecond and a processor power
-of one GFlops, an efficiency of about \np[\%]{40} is
-obtained in asynchronous mode for a matrix size of 62 elements. It is noticed that the result remains
+that after setting the bandwidth of the  inter cluster network to  \np[Mbit/s]{5}, the latency to $20$ millisecond and the processor power
+to one GFlops, an efficiency of about \np[\%]{40} is
+obtained in asynchronous mode for a matrix size of $62^3$ elements. It is noticed that the result remains
 stable even we vary the residual error precision from \np{E-5} to \np{E-9}. By
-increasing the matrix size up to 100 elements, it was necessary to increase the
+increasing the matrix size up to $100^3$ elements, it was necessary to increase the
 CPU power of \np[\%]{50} to \np[GFlops]{1.5} to get the algorithm convergence and the same order of asynchronous mode efficiency.  Maintaining such processor power but increasing network throughput inter cluster up to
 \np[Mbit/s]{50}, the result of efficiency with a relative gain of 2.5 is obtained with
-high external precision of \np{E-11} for a matrix size from 110 to 150 side
+high external precision of \np{E-11} for a matrix size from $110^3$ to $150^3$ side
 elements.
 
 %For the 3 clusters architecture including a total of 100 hosts,
@@ -679,8 +679,8 @@ elements.
 %(synchronous and asynchronous) is achieved with an inter cluster of
 %\np[Mbit/s]{10} and a latency of \np[ms]{E-1}. To challenge an efficiency greater than 1.2 with a matrix %size of 100 points, it was necessary to degrade the
 %inter cluster network bandwidth from 5 to \np[Mbit/s]{2}.
-\AG{Conclusion, on prend une plateforme pourrie pour avoir un bon ratio sync/async ???
-  Quelle est la perte de perfs en faisant ça ?}
+%\AG{Conclusion, on prend une plateforme pourrie pour avoir un bon ratio sync/async ???
+  %Quelle est la perte de perfs en faisant ça ?}
 
 %A last attempt was made for a configuration of three clusters but more powerful
 %with 200 nodes in total. The convergence with a relative gain around 1.1 was
@@ -693,7 +693,7 @@ elements.
 %\CER{Définitivement, les paramètres réseaux variables ici se rapportent au réseau INTER cluster.}
 \section{Conclusion}
 The simulation of the execution of parallel asynchronous iterative algorithms on large scale  clusters has been presented. 
-In this work, we show that SIMGRID is an efficient simulation tool that allows us to 
+In this work, we show that SimGrid is an efficient simulation tool that allows us to 
 reach the following two objectives: 
 
 \begin{enumerate}
@@ -704,7 +704,7 @@ reach the following two objectives:
 
 \item To test the combination of the cluster and network specifications permitting to execute an asynchronous algorithm faster than a synchronous one.
 \end{enumerate}
-Our results have shown that with two distant clusters, the asynchronous multisplitting is faster to \np[\%]{40} compared to the synchronous GMRES method
+Our results have shown that with two distant clusters, the asynchronous multisplitting method is faster to \np[\%]{40} compared to the synchronous GMRES method
 which is not negligible for solving complex practical problems with more 
 and more increasing size.
 
@@ -715,7 +715,7 @@ tool to run efficiently an iterative parallel algorithm in asynchronous
 mode in a grid architecture. 
 
 In future works, we plan to extend our experimentations to larger scale platforms by increasing the number of computing cores and the number of clusters. 
-We will also have to increase the size of the input problem which will require the use of a more powerful simulation platform. At last, we expect to compare our simulation results to real execution results on real architectures in order to experimentally validate our study.
+We will also have to increase the size of the input problem which will require the use of a more powerful simulation platform. At last, we expect to compare our simulation results to real execution results on real architectures in order to better experimentally validate our study. Finally, we also plan to study other problems with the multisplitting method and other asynchronous iterative methods.
 
 \section*{Acknowledgment}