]> AND Private Git Repository - hpcc2014.git/blobdiff - hpcc.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Merge branch 'master' of ssh://info.iut-bm.univ-fcomte.fr/hpcc2014
[hpcc2014.git] / hpcc.tex
index ca655bc05a40eb697c5bff792cfe9569aef711de..c79ed41db32a4a2874f133a3131b97d14781a202 100644 (file)
--- a/hpcc.tex
+++ b/hpcc.tex
@@ -395,9 +395,9 @@ processor is designated (for example the processor with rank 1) and masters of
 all clusters are interconnected by a virtual unidirectional ring network (see
 Figure~\ref{fig:4.1}). During the resolution, a Boolean token circulates around
 the virtual ring from a master processor to another until the global convergence
-is achieved. So starting from the cluster with rank 1, each master processor $i$
+is achieved. So starting from the cluster with rank 1, each master processor $\ell$
 sets the token to \textit{True} if the local convergence is achieved or to
-\textit{False} otherwise, and sends it to master processor $i+1$. Finally, the
+\textit{False} otherwise, and sends it to master processor $\ell+1$. Finally, the
 global convergence is detected when the master of cluster 1 receives from the
 master of cluster $L$ a token set to \textit{True}. In this case, the master of
 cluster 1 broadcasts a stop message to masters of other clusters. In this work,
@@ -691,7 +691,7 @@ elements.
 %\CER{Définitivement, les paramètres réseaux variables ici se rapportent au réseau INTER cluster.}
 \section{Conclusion}
 The simulation of the execution of parallel asynchronous iterative algorithms on large scale  clusters has been presented. 
-Our work has demonstrated that using such a simulation tool allow us to 
+In this work, we show that SIMGRID is an efficient simulation tool that allows us to 
 reach the following three objectives: 
 
 \begin{enumerate}
@@ -705,17 +705,18 @@ of the cluster and network specifications permitting to save time in
 executing the algorithm in asynchronous mode.
 \end{enumerate}
 Our results have shown that in certain conditions, asynchronous mode is 
-speeder up to \np[\%]{40} than executing the algorithm in synchronous mode
+speeder up to \np[\%]{40} comparing to the synchronous GMRES method
 which is not negligible for solving complex practical problems with more 
 and more increasing size.
 
- Several studies have already addressed the performance execution time of 
+Several studies have already addressed the performance execution time of 
 this class of algorithm. The work presented in this paper has 
 demonstrated an original solution to optimize the use of a simulation 
 tool to run efficiently an iterative parallel algorithm in asynchronous 
 mode in a grid architecture. 
 
-\LZK{Perspectives???}
+For our futur works, we plan to extend our experimentations to larger scale platforms by increasing the number of computing cores and the number of clusters. 
+We will also have to increase the size of the input problem which will require the use of a more powerful simulation platform. At last, we expect to compare our simulation results to real execution results on real architectures in order to experimentally validate our study.
 
 \section*{Acknowledgment}