]> AND Private Git Repository - hpcc2014.git/blobdiff - hpcc.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
corrections
[hpcc2014.git] / hpcc.tex
index ca655bc05a40eb697c5bff792cfe9569aef711de..d8c9a8c7a5823060c1917dfd8488f55aa5cdb837 100644 (file)
--- a/hpcc.tex
+++ b/hpcc.tex
@@ -82,8 +82,8 @@ what parameters  could influence or not  the behaviors of an  algorithm. In this
 paper, we show  that it is interesting to use SimGrid  to simulate the behaviors
 of asynchronous  iterative algorithms. For that,  we compare the  behaviour of a
 synchronous  GMRES  algorithm  with  an  asynchronous  multisplitting  one  with
-simulations  in  which we  choose  some parameters.   Both  codes  are real  MPI
-codes. Simulations allow us to see when the multisplitting algorithm can be more
+simulations  which let us easily choose  some parameters.   Both  codes  are real  MPI
+codes ans simulations allow us to see when the asynchronous multisplitting algorithm can be more
 efficient than the GMRES one to solve a 3D Poisson problem.
 
 
@@ -395,9 +395,9 @@ processor is designated (for example the processor with rank 1) and masters of
 all clusters are interconnected by a virtual unidirectional ring network (see
 Figure~\ref{fig:4.1}). During the resolution, a Boolean token circulates around
 the virtual ring from a master processor to another until the global convergence
-is achieved. So starting from the cluster with rank 1, each master processor $i$
+is achieved. So starting from the cluster with rank 1, each master processor $\ell$
 sets the token to \textit{True} if the local convergence is achieved or to
-\textit{False} otherwise, and sends it to master processor $i+1$. Finally, the
+\textit{False} otherwise, and sends it to master processor $\ell+1$. Finally, the
 global convergence is detected when the master of cluster 1 receives from the
 master of cluster $L$ a token set to \textit{True}. In this case, the master of
 cluster 1 broadcasts a stop message to masters of other clusters. In this work,
@@ -691,7 +691,7 @@ elements.
 %\CER{Définitivement, les paramètres réseaux variables ici se rapportent au réseau INTER cluster.}
 \section{Conclusion}
 The simulation of the execution of parallel asynchronous iterative algorithms on large scale  clusters has been presented. 
-Our work has demonstrated that using such a simulation tool allow us to 
+In this work, we show that SIMGRID is an efficient simulation tool that allows us to 
 reach the following three objectives: 
 
 \begin{enumerate}
@@ -705,17 +705,18 @@ of the cluster and network specifications permitting to save time in
 executing the algorithm in asynchronous mode.
 \end{enumerate}
 Our results have shown that in certain conditions, asynchronous mode is 
-speeder up to \np[\%]{40} than executing the algorithm in synchronous mode
+speeder up to \np[\%]{40} comparing to the synchronous GMRES method
 which is not negligible for solving complex practical problems with more 
 and more increasing size.
 
- Several studies have already addressed the performance execution time of 
+Several studies have already addressed the performance execution time of 
 this class of algorithm. The work presented in this paper has 
 demonstrated an original solution to optimize the use of a simulation 
 tool to run efficiently an iterative parallel algorithm in asynchronous 
 mode in a grid architecture. 
 
-\LZK{Perspectives???}
+For our futur works, we plan to extend our experimentations to larger scale platforms by increasing the number of computing cores and the number of clusters. 
+We will also have to increase the size of the input problem which will require the use of a more powerful simulation platform. At last, we expect to compare our simulation results to real execution results on real architectures in order to experimentally validate our study.
 
 \section*{Acknowledgment}