]> AND Private Git Repository - hpcc2014.git/blobdiff - hpcc.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
v0
[hpcc2014.git] / hpcc.tex
index 529e9c14b603e3c5ce7f1f684cbf51edecc581e6..306cf68cb0f0a06c3296fc3558aceb525fcb7b10 100644 (file)
--- a/hpcc.tex
+++ b/hpcc.tex
@@ -83,7 +83,7 @@ paper, we show  that it is interesting to use SimGrid  to simulate the behaviors
 of asynchronous  iterative algorithms. For that,  we compare the  behaviour of a
 synchronous  GMRES  algorithm  with  an  asynchronous  multisplitting  one  with
 simulations  which let us easily choose  some parameters.   Both  codes  are real  MPI
 of asynchronous  iterative algorithms. For that,  we compare the  behaviour of a
 synchronous  GMRES  algorithm  with  an  asynchronous  multisplitting  one  with
 simulations  which let us easily choose  some parameters.   Both  codes  are real  MPI
-codes ans simulations allow us to see when the asynchronous multisplitting algorithm can be more
+codes and simulations allow us to see when the asynchronous multisplitting algorithm can be more
 efficient than the GMRES one to solve a 3D Poisson problem.
 
 
 efficient than the GMRES one to solve a 3D Poisson problem.
 
 
@@ -383,8 +383,8 @@ exchanged by message passing using MPI non-blocking communication routines.
 
 \begin{figure}[!t]
 \centering
 
 \begin{figure}[!t]
 \centering
-  \includegraphics[width=60mm,keepaspectratio]{clustering}
-\caption{Example of three clusters of processors interconnected by a virtual unidirectional ring network.}
+  \includegraphics[width=60mm,keepaspectratio]{clustering2}
+\caption{Example of two distant clusters of processors.}
 \label{fig:4.1}
 \end{figure}
 
 \label{fig:4.1}
 \end{figure}
 
@@ -518,7 +518,7 @@ $\text{62}^\text{3} = \text{\np{238328}}$ to $\text{150}^\text{3} =
     & 5         & 5         & 5         & 5         & 5         \\
     \hline
     latency (ms)
     & 5         & 5         & 5         & 5         & 5         \\
     \hline
     latency (ms)
-    & 0.02      & 0.02      & 0.02      & 0.02      & 0.02      \\
+    & 20      &  20      & 20      & 20      & 20      \\
     \hline
     power (GFlops)
     & 1         & 1         & 1         & 1.5       & 1.5       \\
     \hline
     power (GFlops)
     & 1         & 1         & 1         & 1.5       & 1.5       \\
@@ -543,7 +543,7 @@ $\text{62}^\text{3} = \text{\np{238328}}$ to $\text{150}^\text{3} =
     & 50        & 50        & 50        & 50        & 50 \\ %       & 10        & 10 \\
     \hline
     latency (ms)
     & 50        & 50        & 50        & 50        & 50 \\ %       & 10        & 10 \\
     \hline
     latency (ms)
-    & 0.02      & 0.02      & 0.02      & 0.02      & 0.02 \\ %      & 0.03      & 0.01 \\
+    & 20      & 20      & 20      & 20      & 20 \\ %      & 0.03      & 0.01 \\
     \hline
     Power (GFlops)
     & 1.5       & 1.5       & 1.5       & 1.5       & 1.5 \\ %      & 1         & 1.5 \\
     \hline
     Power (GFlops)
     & 1.5       & 1.5       & 1.5       & 1.5       & 1.5 \\ %      & 1         & 1.5 \\
@@ -561,13 +561,15 @@ $\text{62}^\text{3} = \text{\np{238328}}$ to $\text{150}^\text{3} =
   \end{mytable}
 \end{table}
   
   \end{mytable}
 \end{table}
   
+\RC{Du coup la latence est toujours la même, pourquoi la mettre dans la table?}
+
 %Then we have changed the network configuration using three clusters containing
 %respectively 33, 33 and 34 hosts, or again by on hundred hosts for all the
 %clusters. In the same way as above, a judicious choice of key parameters has
 %permitted to get the results in Table~\ref{tab.cluster.3x33} which shows the
 %relative gains greater than 1 with a matrix size from 62 to 100 elements.
 
 %Then we have changed the network configuration using three clusters containing
 %respectively 33, 33 and 34 hosts, or again by on hundred hosts for all the
 %clusters. In the same way as above, a judicious choice of key parameters has
 %permitted to get the results in Table~\ref{tab.cluster.3x33} which shows the
 %relative gains greater than 1 with a matrix size from 62 to 100 elements.
 
-\CER{En accord avec RC, on a pour le moment enlevé les tableaux 2 et 3 sachant que les résultats obtenus sont limites. De même, on a enlevé aussi les deux dernières colonnes du tableau I en attendant une meilleure performance et une meilleure precision}
+%\CER{En accord avec RC, on a pour le moment enlevé les tableaux 2 et 3 sachant que les résultats obtenus sont limites. De même, on a enlevé aussi les deux dernières colonnes du tableau I en attendant une meilleure performance et une meilleure precision}
 %\begin{table}[!t]
 %  \centering
 %  \caption{3 clusters, each with 33 nodes}
 %\begin{table}[!t]
 %  \centering
 %  \caption{3 clusters, each with 33 nodes}
@@ -634,8 +636,8 @@ Note that the program was run with the following parameters:
   \begin{itemize}
   \item 2 clusters of 50 hosts each;
   \item Processor unit power: \np[GFlops]{1} or \np[GFlops]{1.5};
   \begin{itemize}
   \item 2 clusters of 50 hosts each;
   \item Processor unit power: \np[GFlops]{1} or \np[GFlops]{1.5};
-  \item Intra-cluster network bandwidth: \np[Gbit/s]{1.25} and latency: \np[$\mu$s]{0.05};
-  \item Inter-cluster network bandwidth: \np[Mbit/s]{5} or \np[Mbit/s]{50} and latency: \np[$\mu$s]{20};
+  \item Intra-cluster network bandwidth: \np[Gbit/s]{1.25} and latency: \np[$\mu$s]{50};
+  \item Inter-cluster network bandwidth: \np[Mbit/s]{5} or \np[Mbit/s]{50} and latency: \np[ms]{20};
   \end{itemize}
 \end{itemize}
 
   \end{itemize}
 \end{itemize}