paper, we show that it is interesting to use SimGrid to simulate the behaviors
of asynchronous iterative algorithms. For that, we compare the behaviour of a
synchronous GMRES algorithm with an asynchronous multisplitting one with
paper, we show that it is interesting to use SimGrid to simulate the behaviors
of asynchronous iterative algorithms. For that, we compare the behaviour of a
synchronous GMRES algorithm with an asynchronous multisplitting one with
-simulations in which we choose some parameters. Both codes are real MPI
-codes. Simulations allow us to see when the multisplitting algorithm can be more
+simulations which let us easily choose some parameters. Both codes are real MPI
+codes ans simulations allow us to see when the asynchronous multisplitting algorithm can be more
all clusters are interconnected by a virtual unidirectional ring network (see
Figure~\ref{fig:4.1}). During the resolution, a Boolean token circulates around
the virtual ring from a master processor to another until the global convergence
all clusters are interconnected by a virtual unidirectional ring network (see
Figure~\ref{fig:4.1}). During the resolution, a Boolean token circulates around
the virtual ring from a master processor to another until the global convergence
global convergence is detected when the master of cluster 1 receives from the
master of cluster $L$ a token set to \textit{True}. In this case, the master of
cluster 1 broadcasts a stop message to masters of other clusters. In this work,
global convergence is detected when the master of cluster 1 receives from the
master of cluster $L$ a token set to \textit{True}. In this case, the master of
cluster 1 broadcasts a stop message to masters of other clusters. In this work,
After analyzing the outputs, generally, for the two clusters including one hundred hosts configuration (Tables~\ref{tab.cluster.2x50}), some combinations of parameters affecting
the results have given a relative gain more than 2.5, showing the effectiveness of the
After analyzing the outputs, generally, for the two clusters including one hundred hosts configuration (Tables~\ref{tab.cluster.2x50}), some combinations of parameters affecting
the results have given a relative gain more than 2.5, showing the effectiveness of the
With these settings, Table~\ref{tab.cluster.2x50} shows
that after setting the bandwidth of the inter cluster network to \np[Mbit/s]{5} and a latency in order of one hundredth of millisecond and a processor power
With these settings, Table~\ref{tab.cluster.2x50} shows
that after setting the bandwidth of the inter cluster network to \np[Mbit/s]{5} and a latency in order of one hundredth of millisecond and a processor power
%\LZK{Ma question est: le bandwidth et latency sont ceux inter-clusters ou pour les deux inter et intra cluster??}
%\CER{Définitivement, les paramètres réseaux variables ici se rapportent au réseau INTER cluster.}
\section{Conclusion}
%\LZK{Ma question est: le bandwidth et latency sont ceux inter-clusters ou pour les deux inter et intra cluster??}
%\CER{Définitivement, les paramètres réseaux variables ici se rapportent au réseau INTER cluster.}
\section{Conclusion}
-The experimental results on executing a parallel iterative algorithm in
-asynchronous mode on an environment simulating a large scale of virtual
-computers organized with interconnected clusters have been presented.
-Our work has demonstrated that using such a simulation tool allow us to
+The simulation of the execution of parallel asynchronous iterative algorithms on large scale clusters has been presented.
+In this work, we show that SIMGRID is an efficient simulation tool that allows us to
We will also have to increase the size of the input problem which will require the use of a more powerful simulation platform. At last, we expect to compare our simulation results to real execution results on real architectures in order to experimentally validate our study.
\section*{Acknowledgment}
This work is partially funded by the Labex ACTION program (contract ANR-11-LABX-01-01).
We will also have to increase the size of the input problem which will require the use of a more powerful simulation platform. At last, we expect to compare our simulation results to real execution results on real architectures in order to experimentally validate our study.
\section*{Acknowledgment}
This work is partially funded by the Labex ACTION program (contract ANR-11-LABX-01-01).
% trigger a \newpage just before the given reference
% number - used to balance the columns on the last page
% trigger a \newpage just before the given reference
% number - used to balance the columns on the last page