\end{mytable}
\end{table}
-\RC{Du coup la latence est toujours la même, pourquoi la mettre dans la table?}
+%\RC{Du coup la latence est toujours la même, pourquoi la mettre dans la table?}
%Then we have changed the network configuration using three clusters containing
%respectively 33, 33 and 34 hosts, or again by on hundred hosts for all the
%(synchronous and asynchronous) is achieved with an inter cluster of
%\np[Mbit/s]{10} and a latency of \np[ms]{E-1}. To challenge an efficiency greater than 1.2 with a matrix %size of 100 points, it was necessary to degrade the
%inter cluster network bandwidth from 5 to \np[Mbit/s]{2}.
-\AG{Conclusion, on prend une plateforme pourrie pour avoir un bon ratio sync/async ???
- Quelle est la perte de perfs en faisant ça ?}
+%\AG{Conclusion, on prend une plateforme pourrie pour avoir un bon ratio sync/async ???
+ %Quelle est la perte de perfs en faisant ça ?}
%A last attempt was made for a configuration of three clusters but more powerful
%with 200 nodes in total. The convergence with a relative gain around 1.1 was
\item To test the combination of the cluster and network specifications permitting to execute an asynchronous algorithm faster than a synchronous one.
\end{enumerate}
-Our results have shown that with two distant clusters, the asynchronous multisplitting is faster to \np[\%]{40} compared to the synchronous GMRES method
+Our results have shown that with two distant clusters, the asynchronous multisplitting method is faster to \np[\%]{40} compared to the synchronous GMRES method
which is not negligible for solving complex practical problems with more
and more increasing size.