]> AND Private Git Repository - hpcc2014.git/blobdiff - hpcc.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Merge branch 'master' of ssh://info.iut-bm.univ-fcomte.fr/hpcc2014
[hpcc2014.git] / hpcc.tex
index efa47d13070b9fc4b9f8d8d32cdcb0af7eedbc83..a5aeb12943dcc6f3137d74d8b9b84b1a2ece1c96 100644 (file)
--- a/hpcc.tex
+++ b/hpcc.tex
@@ -82,8 +82,8 @@ what parameters  could influence or not  the behaviors of an  algorithm. In this
 paper, we show  that it is interesting to use SimGrid  to simulate the behaviors
 of asynchronous  iterative algorithms. For that,  we compare the  behaviour of a
 synchronous  GMRES  algorithm  with  an  asynchronous  multisplitting  one  with
-simulations  in  which we  choose  some parameters.   Both  codes  are real  MPI
-codes. Simulations allow us to see when the multisplitting algorithm can be more
+simulations  which let us easily choose  some parameters.   Both  codes  are real  MPI
+codes ans simulations allow us to see when the asynchronous multisplitting algorithm can be more
 efficient than the GMRES one to solve a 3D Poisson problem.
 
 
@@ -395,9 +395,9 @@ processor is designated (for example the processor with rank 1) and masters of
 all clusters are interconnected by a virtual unidirectional ring network (see
 Figure~\ref{fig:4.1}). During the resolution, a Boolean token circulates around
 the virtual ring from a master processor to another until the global convergence
-is achieved. So starting from the cluster with rank 1, each master processor $i$
+is achieved. So starting from the cluster with rank 1, each master processor $\ell$
 sets the token to \textit{True} if the local convergence is achieved or to
-\textit{False} otherwise, and sends it to master processor $i+1$. Finally, the
+\textit{False} otherwise, and sends it to master processor $\ell+1$. Finally, the
 global convergence is detected when the master of cluster 1 receives from the
 master of cluster $L$ a token set to \textit{True}. In this case, the master of
 cluster 1 broadcasts a stop message to masters of other clusters. In this work,
@@ -483,7 +483,7 @@ The ratio between the simulated execution time of synchronous GMRES algorithm
 compared to the asynchronous multisplitting algorithm ($t_\text{GMRES} / t_\text{Multisplitting}$) is defined as the \emph{relative gain}. So,
 our objective running the algorithm in SimGrid is to obtain a relative gain greater than 1.
 A priori, obtaining a relative gain greater than 1 would be difficult in a local
-area network configuration where the synchronous mode will take advantage on the
+area network configuration where the synchronous GMRES method will take advantage on the
 rapid exchange of information on such high-speed links. Thus, the methodology
 adopted was to launch the application on a clustered network. In this
 configuration, degrading the inter-cluster network performance will penalize the
@@ -508,7 +508,8 @@ $\text{62}^\text{3} = \text{\np{238328}}$ to $\text{150}^\text{3} =
 
 \begin{table}[!t]
   \centering
-  \caption{2 clusters, each with 50 nodes}
+  \caption{Relative gain  of the multisplitting algorithm compared  to GMRES for
+    different configurations with 2 clusters, each one composed of 50 nodes.}
   \label{tab.cluster.2x50}
 
   \begin{mytable}{5}
@@ -656,10 +657,10 @@ Note that the program was run with the following parameters:
 
 After analyzing the outputs, generally, for the two clusters including one hundred hosts configuration (Tables~\ref{tab.cluster.2x50}), some combinations of parameters affecting
 the results have given a relative gain more than 2.5, showing the effectiveness of the
-asynchronous performance compared to the synchronous mode.
+asynchronous multisplitting  compared to GMRES with two distant clusters.
 
 With these settings, Table~\ref{tab.cluster.2x50} shows
-that after a deterioration of inter cluster network with a bandwidth of \np[Mbit/s]{5} and a latency in order of one hundredth of millisecond and a processor power
+that after setting the bandwidth of the  inter cluster network to  \np[Mbit/s]{5} and a latency in order of one hundredth of millisecond and a processor power
 of one GFlops, an efficiency of about \np[\%]{40} is
 obtained in asynchronous mode for a matrix size of 62 elements. It is noticed that the result remains
 stable even we vary the residual error precision from \np{E-5} to \np{E-9}. By
@@ -689,10 +690,8 @@ elements.
 %\LZK{Ma question est: le bandwidth et latency sont ceux inter-clusters ou pour les deux inter et intra cluster??}
 %\CER{Définitivement, les paramètres réseaux variables ici se rapportent au réseau INTER cluster.}
 \section{Conclusion}
-The experimental results on executing a parallel iterative algorithm in 
-asynchronous mode on an environment simulating a large scale of virtual 
-computers organized with interconnected clusters have been presented. 
-Our work has demonstrated that using such a simulation tool allow us to 
+The simulation of the execution of parallel asynchronous iterative algorithms on large scale  clusters has been presented. 
+In this work, we show that SIMGRID is an efficient simulation tool that allows us to 
 reach the following three objectives: 
 
 \begin{enumerate}
@@ -706,22 +705,23 @@ of the cluster and network specifications permitting to save time in
 executing the algorithm in asynchronous mode.
 \end{enumerate}
 Our results have shown that in certain conditions, asynchronous mode is 
-speeder up to \np[\%]{40} than executing the algorithm in synchronous mode
+speeder up to \np[\%]{40} comparing to the synchronous GMRES method
 which is not negligible for solving complex practical problems with more 
 and more increasing size.
 
- Several studies have already addressed the performance execution time of 
+Several studies have already addressed the performance execution time of 
 this class of algorithm. The work presented in this paper has 
 demonstrated an original solution to optimize the use of a simulation 
 tool to run efficiently an iterative parallel algorithm in asynchronous 
 mode in a grid architecture. 
 
-\LZK{Perspectives???}
+In future works, we plan to extend our experimentations to larger scale platforms by increasing the number of computing cores and the number of clusters. 
+We will also have to increase the size of the input problem which will require the use of a more powerful simulation platform. At last, we expect to compare our simulation results to real execution results on real architectures in order to experimentally validate our study.
 
 \section*{Acknowledgment}
 
 This work is partially funded by the Labex ACTION program (contract ANR-11-LABX-01-01).
-\todo[inline]{The authors would like to thank\dots{}}
+%\todo[inline]{The authors would like to thank\dots{}}
 
 % trigger a \newpage just before the given reference
 % number - used to balance the columns on the last page